تاثیر غنی‌سازی کمپوست کاه گندم با اوره و استرپتومایسس بر فاکتورهای فیزیکوشیمیایی کمپوست

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بیولوژی و بیوتکنولوژی خاک استادیار علوم خاک گرگان

2 گروه علوم و مهندسی خاک داشگاه علوم کشاورزی و منابع طبیعی گرگان

3 دانشیار علوم خاک گرگان

4 گروه علوم و مهندسی خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

5 گروه علوم باغبانی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

10.30466/asr.2023.121394

چکیده

افزودن نیتروژن، اندازه ذرات و تیمار میکروبی از عوامل مهم در تولید کمپوست رسیده می‌باشند. لذا هدف از این پژوهش، بررسی برخی پارامترهای فیزیکی، شیمیایی و محتوای عناصر غذایی در کمپوست کاه گندم غنی شده با اوره و استرپتومایسس بود. آزمایش انکوباسیون در قالب طرح کامل تصادفی بر مبنای زمان به منظور بررسی اثر غنی‌سازی کمپوست با استرپتومایسس و اوره بر فراهمی عناصر کم مصرف، pH، EC، C/N، شاخص هوموسی شدن کمپوست (نسبت E4/E6)، دما، تغییرات رطوبت و وزن خاکستر با سه تیمار شامل: اندازه بقایای گندم (R0 (<1)، R1 (1-2) و R2 (2-4 سانتی‌متر))، سه سطح استرپتومایسس (S0 (0)، S1 (5/0) و S2 (5 درصد)) و سه سطح اوره (U0 (0)، U1 (05/8) و U2 (1/16 گرم بر کیلوگرم)) در سه تکرار طراحی و اجرا گردید. پارامترها در زمان‌های مختلف طی 90 روز انکوباسیون اندازه‌گیری شدند. افزایش سریع دما در تیمار کمپوست غنی شده با اوره و استرپتومایسس در بازه زمانی کوتاه‌تری نسبت به تیمار شاهد رخ داد. مقدار pH در تمامی تیمارها در طی 20 روز اول انکوباسیون روندی کاهشی داشته و سپس افزایش یافت. شاخص هوموسی شدن نیز در کمپوست‌های تیمارشده و شاهد پس از 90 روز انکوباسیون کاهش یافت. نسبت C:N در اثر فرآیند کمپوست شده به طور چشمگیری کاهش یافت. به طور کلی، غنی‌سازی کمپوست با اوره یا استرپتومایسس منجر به افزایش محتوای عناصر غذایی شد. هر چند که مقادیر عناصر غذایی در کمپوست تیمار شده با استرپتومایسس و اوره بیش‌تر از سایر تیمارها بود. نتایج ما نشان داد که کاربرد توام جدایه استرپتومایسس و اوره پتانسیل استفاده در فرآیند کمپوست و در نتیجه بهبود ویژگی‌های خاک را بهتر از کمپوست تیمار نشده، دارد. هر چند که برای اثبات این پتانسیل، استفاده از این تیمار درفرآیند کمپوست کردن در مقیاس بزرگ ضروری است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Compost Enrichment with Urea and Streptomyces on Physicochemical Factors of Compost

نویسندگان [English]

  • Reza Ghorbani Nasrabadi 1
  • Elham Sadeghi 2
  • Seyed Alireza movahedi Naeini 3
  • Mojtaba Barani Motlagh 4
  • Mostafa Khoshhal 5
1 بیولوژی و بیوتکنولوژی خاک
2 Soil Science Dep. Gorgan University of agricultural Sciences and Natural Resources
3 Soil Science Dep. Gorgan University of agricultural Sciences and Natural Resources
4 Soil Science Dep. Gorgan University of Agricultural Sciences and Natural Resources
5 Horticultural Science Dep. Gorgan University of Agricultural Sciences and Natural Resources
چکیده [English]

Nitrogen addition, particle size, and microbial treatment are important factors in mature compost production. Therefore, this study aimed to investigate some physical and chemical parameters and nutrient content in wheat straw compost enriched with urea and Streptomyces. The incubation experiment was performed in a time-based, completely randomized design. To evaluate the effect of compost enrichment with Streptomyces and urea on available micronutrient elements, humification index of compost (E4/E6 ratio), pH, EC, C/N, temperature, Changes in moisture, and ash weight the following treatments (1) wheat residue size at three levels (R0 (<1), R1 (1-2) and R2 (2-4 cm)), (2) three levels of Streptomyces inoculation (S0 (0), S1 (0.5) and S2 (5%)), and (3) three levels of urea (U0 (0), U1 (8.05) and U2 (16.1 g kg-1)) with three replications were applied. The parameters were measured at different times during 90 days of incubation. A rapid increase in temperature in enriched compost with urea and Streptomyces treatment occurred in a shorter time than the control treatment. The pH value in all treatments decreased during the first 20 days of incubation and then increased. The C: N ratio significantly decreased due to the composting process. The humification index also reduced in the treated and control composts after 90 days of incubation. In general, the enrichment of compost with urea or Streptomyces showed increased nutrient values. However, the compost treated with Streptomyces and urea exhibited the highest values of nutrients compared to others. Our results showed that co-application of our isolate and urea can be used in composting process and improve soil properties better than non-treated compost. However, large-scale composting to prove the potentiality of the treatment in enhancement of compost quality is necessary.

کلیدواژه‌ها [English]

  • Compost
  • C/N
  • E4/E6
  • Streptomyces
  • Urea
Agegnehu G., vanBeek C., and Bird M. 2014. Influence of integrated soil fertility management in wheat andtef productivity and soil chemical properties in the highland tropical environment. Journal of Soil Science and Plant Nutrition, 2014: 14.
Agnew J.M., and Leonard J.J. 2003. The physical properties of compost. Compost Science and Utilization, 11: 238-264. https://doi.org/10.1080/1065657X.2003.10702132.
Alavi N., Daneshpajou M., Shirmardi M., Goudarzi G., Neisi A., and Babaei A.A. 2017.
Investigating the efficiency of co-composting and vermicomposting of vinasse with
the mixture of cow manure wastes, bagasse, and natural zeolite. Waste Management, 69:
117-126. https://doi.org/10.1016/j.wasman.2017.07.039
Andrade F., Fernandes F., Junior A., Rondina A., Hungria M., and Nogueira M. 2021. Enrichment of organic compost with beneficial microorganisms and yield performance of corn and wheat. Revista Brasileira de Engenharia Agricola e Ambiental, 25: 332-339.
Calabi-Floody M., Medina J., Suazo J., Ordiqueo M., Aponte H., Luz Mora M., and Rumpel C. 2019. Optimization of wheat straw co-composting for carrier material development. Waste Management, 98: 37-49. https://doi.org/10.1016/j.wasman.2019.07.041.
Cesaro A., Belgiorno V., and Guid M. 2015. Compost from organic solid waste: Quality assessment and European regulations for its sustainable use. Resour. Resources, Conservation and Recycling, 94:72-79.
Ezugworie F.N., Igbokwe V.C., and Onwosi C.O. 2021. Proliferation of antibiotic-resistant microorganisms and associated genes during composting: An overview of the potential impacts on public health, management and future. Science of The Total Environment, 784: 147191. https://doi.org/10.1016/j.scitotenv.2021.147191
Feng J., Wang B., Zhang D., Chu S., Zhi Y., Hayat K., Wang J., Chen X., Hui N., and Zhou P. 2021. Streptomyces griseorubens JSD-1 promotes rice straw composting efficiency in industrial-scale fermenter: evaluation of change in physicochemical properties and microbial community. Bioresource Technology, 321: 124465. https://doi.org/10.1016/j.biortech.2020.124465
Filcheva E., Hristova M., Nikolova P., Popova T., Chakalov K., and Savov V., 2018. Quantitative and qualitative characterisation of humic products with spectral parameters. Journal of Soils and Sediments, 18: 2863-2867. https://doi.org/10.1007/s11368-018- 2021-4.
Fourti O., Jedidi N., and Hassen A. 2008. Behaviour of Main Microbiological Parameters and of Enteric Microorganisms During the Composting of Municipal Solid Wastes and Sewage Sludge in A Semi- Industrial Composting Plant. American Journal of Environmental Sciences, 4: 103-10. https://doi.org/10.3844/ajessp.2008.103.110
Ghorbani-Nasrabadi R., Greiner R., Alikhani H., Hamedi J., and Yakhchali B. 2013. Distribution of actinomycetes in different soil ecosystems and effect of media composition on extracellular phosphatase activity. Journal of Soil Science and Plant Nutrition, 13: 223-236. https://doi.org/10.4067/S0718-95162013005000020
Gondek M., Weindorf D.C., Thiel C., and Kleinheinz G. 2020. Soluble salts in compost and
their effects on soil and plants: a review. Compost Science and Utilization, 28: 59-75. https://
doi.org/10.1080/1065657X.2020.1772906
Grigatti M., Cavani L., and Ciavatta C. 2011. The evaluation of stability during the composting of different starting materials: Comparison of chemical and biological parameters. Chemosphere, 83:41-8. https://doi.org/10.1016/j.chemosphere.2011.01.010
Gurusamy N., Puffer N., Jongh C., Gil C., and Aspray T. 2021. Effect of initial moisture content and sample storage duration on compost stability using the ORG0020 dynamic respiration test. Waste Management, 125: 215-219. https://doi.org/10.1016/j.wasman.2021.02.048   
Haddadin M.S.Y., Haddadin J., Arabiyat O.I., and Hattar B. 2009. Biological conversion of olive pomace into compost by using Trichoderma harzianum and Phanerochaete chrysosporium. Bioresource Technology, 100: 4773-4782. https://doi.org/10.1016/j.biortech.2009.04.047.
Huet J., Druilhe C., Tremier A., Benoist J.C., and Debenest G. 2012. The impact of compaction, moisture content, particle size and type of bulking agent on initial physical properties of sludge-bulking agent mixtures before composting. Bioresource Technology, 114: 428-436. https://doi.org/10.1016/j.biortech.2012.03.031
Hui M., Tan L., Letchumanan L., He Y., Fang C., Chan K., and Lee,L. 2021. The Extremophilic Actinobacteria: From Microbes to Medicine. Antibiotics, 10 (6): 682. https://doi.org/10.3390/antibiotics10060682
Hultman J., Vasara T., Partanen P., Kurola J., Kontro M.H., Paulin L., Auvinen P., and Romantschuk M. 2010. Determination of fungal succession during municipal solid waste composting using a cloning-based analysis. Journal of Applied Microbiology, 108: 472-487. https://doi.org/10.1111/j.1365-2672.2009.04439.x.
Jurado M., Suarez-Estrella F., Lopez M.J., Vargas-Garcia M.C., Lopez-Gonzalez J.A., and Moreno J. 2015. Enhanced turnover of organic matter fractions by microbial stimulation during lignocellulosic waste composting. Bioresource Technology, 186:15-24. https://doi.org/10.1016/j.biortech.2015.03.059
Koolivand A., Nadaffi K., Nabizadeh R., Nasseri S., Jonidi Jafari A., Yunesian M., and Yaghmaeian K. 2013. Degradation of petroleum hydrocarbons from bottom sludge of crude oil storage tanks using in-vessel composting followed by oxidation with hydrogen peroxide and Fenton. Journal of Material Cycles and Waste Management, 15: 321-7. http://dx.doi.org/10.1007/s10163-013-0121-1
Li X., Li B., Chen L., Liang J., Huang R., Tang X., Zhang X., and Wang C. 2022. Partial substitution of chemical fertilizer with organic fertilizer over seven years increases yields and restores soil bacterial community diversity in wheat-rice rotation. European Journal of Agronomy, 133: 126445. https://doi.org/10.1016/j.eja.2021.126445 
Liu D., Zhang R., Wu H., Xu D., Tang Z., Yu G., Xu Z., and Shen Q. 2011. Changes in biochemical and microbiological parameters during the period of rapid composting of dairy manure with rice chaff. Bioresource Technology, 19: 9040-9049. https://doi.org/10.1016/j.biortech.2011.07.052
Liu H.J., Huang Y., Duan W.D., Qiao C.C., Shen Q.R., and Li, R. 2020. Microbial community composition turnover and function in the mesophilic phase predetermine chicken manure composting efficiency. Bioresource Technology, 313: 123658. https://doi.org/10.1016/j.biortech.2020.123658
Luo Y., Pieter H., Veelen J., Chen S., Sechi V., Heijne A., Veeken A., Buisman C., and Bezemer T. 2022. Effects of sterilization and maturity of compost on soil bacterial and fungal communities and wheat growth. Geoderma, 409: 115598. https://doi.org/10.1016/j.geoderma.2021.115598
Majidi A., Tabiehzad H. 2017. Effect of Different Sources and Amounts of Nitrogen on Root Yield and Some Qualitative Characteristics of Sugar Bee. Applied Soil Research, 6(3): 118-129. (In Persian)
Malakootian M., Mobini M., and Nekoonam G.A. 2014. Evaluation of the Compost Produced from Mixed Sludge of Municipal Wastewater Treatment Plant and Pistachio Hull Waste. Journal of Mazandaran University of Medical Sciences, 24: 172-183 (Translated in Persian).
Melo B.A., Lopes Motta F., and Santana M.H.A. 2015. Humic Acids: Structural properties and multiple functionalities for novel technological developments. Materials Science and Engineering C, 62: 967-974. https://doi.org/10.1016/j.msec.2015.12.001
Mikiashvili N., Elisashvili V., Wasser S., and Nevo E. 2005. Carbon and nitrogen sources influence the ligninolytic enzyme activity of Trametes versicolor. Biotechnology Letters, 27: 955-959. https://doi.org/10.1007/s10529-005-7662-x
Omidi J., Hatamzadeh A., and Mahboub Khomami A. 2020. Use of Peanut Shell Compost in Growth Media and Its Effect on the Physical and Chemical Properties of Soil. Journal of Soil Research (Soil and Water Sciences), 2: 292-308. https://dx.doi.org/10.22092/ijsr.2020.122640
Onwosi C.O., Igbokwe V.C., Odimba J.N., Eke I.E., Nwankwoala M.O., Iroh I.N., and Ezeogu L.I. 2017. Composting technology in waste stabilization: on the methods, challenges and future prospects. Journal of Environmental Management, 190: 140-157. https://doi.org/10.1016/j.jenvman.2016.12.051.
Oyewusi T., Osunbitan J., Ogunwande G., and Omotosho O. 2021. Investigation into physico-chemical properties of compost extract as affected by processing parameters. Environmental Challenges, 5: 100370. https://doi.org/10.1016/j.envc.2021.100370 
Partanen P., Hultman J., Paulin L., Auvinen P., and Romantschuk M. 2010. Bacterial diversity at different stages of the composting process. BMC Microbiology, 10(1): 94. http://dx.doi.org/10.1186/1471-2180-10-94
Pramanik P., Ghosh G., Ghosal P., and Banik P. 2007. Changes in Organic-C, N, P and K and enzyme activities in vermicompost of biodegradable organic wastes under liming and microbial inoculants. Bioresource Technology, 98: 13. 2485-2494. https://doi.org/10.1016/j.biortech.2006.09.017
Reisi Z., Tadayyon M.R., and Fallah S. 2015. Effects of Chemical and Organic Fertilizers on Some of Growth and Quality Indices of Tobacco (Nicotiana tabacum L.). The Plant Production (Scientific Journal of Agriculture), 40:16-28. (Translated in Persian)
Reyes-torres M., Oviedo-ocana E.R., Dominguez I., Komilis D., and Sanchez A., 2018. A systematic review on the composting of green waste: feedstock quality and optimization strategies A systematic review on the composting of green waste: feedstock quality and optimization strategies. Waste Management, 77: 486-499. https://doi.org/10.1016/j.wasman.2018.04.037.
Sankaran R., Cruz R., Pakalapati H., Show P., Ling T., Chen W., and Tao Y. 2020. Recent advances in the pretreatment of microalgal and lignocellulosic biomass: a comprehensive review. Bioresource Technology, 298: 122476. https://doi.org/10.1016/j.biortech.2019.122476
Sarsaiya S., Jain A., Awasthi S., Duan Y., Awasthi M., and Shi J. 2019. Microbial dynamics for lignocellulosic waste bioconversion and its importance with modern circular economy, challenges and future perspectives. Bioresource Technology, 291:121905. http://dx.doi.org/10.1016/j.biortech.2019.121905
Senesi N., and Plaza C. 2007. Role of humification processes in recycling organic wastes of various nature and sources as organic amendments. Clean, 35 (1): 26-41. https://doi.org/10.1002/clen.200600018.
Shen D.S., Yang Y.Q., Huang H.L., Hu L.F., and Long Y.Y. 2015. Water state changes during the composting of kitchen waste. Waste Management, 38: 381-387. https://doi.org/10.1016/j.wasman.2015.01.011
Shi Y., Liu X., Zhang Q., and Li Y. 2022. Contrasting effects of biochar- and organic fertilizer-amendment on community compositions of nitrifiers and denitrifiers in a wheat-maize rotation system. Applied Soil Ecology, 171: 104320. https://doi.org/10.1016/j.apsoil.2021.104320
Shuokr Q.A., Imad A.O., and Jwan S.M., 2018. Design and study for composting process site. International Journal of Science and Engineering Invention, 7 (9): 9-18.
Silva G.G.D., Couturier M., Berrin J.G., Buleon A., and Rouau X., 2012. Effects of grinding processes on enzymatic degradation of wheat straw. Bioresource Technology, 103 (1): 192-200. https://doi.org/10.1016/j.biortech.2011.09.073.
Stevenson F.J. 1994. Humus chemistry: genesis, composition, reactions. Wiley, New York.
Tchegueni S., Koriko M., Koledzi E., Bodjona M., Kili K., Tchangbedji G., Baba G., and Hafidi M. 2013. Physicochemical characterization of organic matter during co-composting of shea-nut cake with goat manure. African Journal of Biotechnology, 12: 3466-3471. DOI: 10.5897/AJB12.2192.
Wang K., He C., You S., Liu W., Wang W., Zhang R., Qi H., and Ren N. 2015. Transformation of organic matters in animal wastes during composting. Journal of Hazardous Materials, 300:745-53. https://doi.org/10.1016/j.jhazmat.2015.08.016 
Wong J.W.C., Wang X., and Selvam A. 2017. Improving compost quality by controlling nitrogen loss during composting. In: Wong, J.W.C., Tyagi, R.D., Pandey, A. (Eds.), Current Developments in Biotechnology and Bioengineering, Elsevier, pp: 59-82.
Wu D., Wei Z., AhmedMohamed T., Zheng G., Qu F., Wang F., Zhao Y., and So C. 2022. Lignocellulose biomass bioconversion during composting: Mechanism of action of lignocellulase, pretreatment methods and future perspectives. Chemosphere, 286: 131635. https://doi.org/10.1016/j.chemosphere.2021.131635.
Xie G.X., Kong X.L., Kang J.L., Su N., Luo G.W., and Fei J.C. 2021. Community-level dormancy potential regulates bacterial beta-diversity succession during the co-composting of manure and crop residues. Science of the Total Environment, 772: 145506. https://doi.org/10.1016/j.scitotenv.2021.145506
Xu Y., Gao Y., Tan L., Wang Q., Li Q., Wei X., Liu F., Li Y., and Zheng X. 2022. Exploration of bacterial communities in products after composting rural wastes with different components: Core microbiome and potential pathogenicity. Environmental Technology and Innovation, 25: 102222.  https://doi.org/10.1016/j.eti.2021.102222
Zhang L., and Sun X. 2017. Addition of fish pond sediment and rock phosphate
enhances the composting of green waste. Bioresource Technology, 233: 116-126.
https://doi.org/10.1016/j.biortech.2017.02.073
Zhang L., Jia Y., Zhang X., Feng X., Wu J., Wang L., and Chen G. 2016. Wheat straw: an inefficient substrate for rapid natural lignocellulosic composting. Bioresource Technology, 209: 402-406. https://doi.org/10.1016/j.biortech.2016.03.004.
Zhang L., Sun X.Y., Tian Y., and Gong X.Q. 2013. Effects of brown sugar and
calcium superphosphate on the secondary fermentation of green waste. Bioresource Technology, 131: 68-75. http://dx.doi.org/10.1016/j.biortech.2012.10.059
Zhang X., Zhong Y., Yang S., Zhang W., Xu M., Ma A., Zhuang G., Chen G., and Liu W. 2014. Diversity and dynamics of the microbial community on decomposing wheat straw during mushroom compost production. Bioresource Technology, 170: 183-195. https://doi.org/10.1016/j.biortech.2014.07.093.
Zhao Y., Lu Q., Wei Y., Cui H., Zhang X., Wang X., Shan S., and Wei Z. 2016. Effect of actinobacteria agent inoculation methods on cellulose degradation during composting based on redundancy analysis. Bioresource Technology, 219: 196-203. https://doi.org/10.1016/j.biortech.2016.07.117
Zhao Y., Zhao Y., Zhang Z., Wei Y., Wang H., Lu Q., Li Y., and Wei Z. 2017. Effect of thermo-tolerant actinomycetes inoculation on cellulose degradation and the formation of humic substances during composting. Waste Management, 68: 64-73. https://doi.org/10.1016/j.wasman.2017.06.022
Zhou Z., Ju X., Chen J., Wang R., Zhong Y., and Li L. 2021. Charge-oriented strategies of tunable substrate affinity based on cellulase and biomass for improving in situ scarification: a review. Bioresource Technology, 319:124159. https://doi.org/10.1016/j.biortech.2020.124159
Zhu N. 2007. Effect of low initial C/N ratio on aerobic composting of swine manure with rice straw.
Bioresource Technology, 98:9-13. https://doi.org/10.1016/j.biortech.2005.12.003