مقایسه تصاویر سنجنده‌های چند طیفی Sentinel 2 و Spot 5 به منظور تهیه نقشه تراکم پوشش مرتعی در استان لرستان (حوزه آبخیز کشکان میانی)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده کشاورزی و منابع طبیعی دانشگاه آزاد اسلامی واحد اراک

2 دانشیار دانشکده کشاورزی و منابع طبیعی دانشگاه آزاد اسلامی واحد اراک

10.30466/asr.2023.121397

چکیده

مراتع دارای ارزش­های مختلفی هستند و از طرف دیگر دارای تغییرات بالای مکانی و زمانی هستند. بنابراین با توجه به تغییرات مداوم مراتع و همچنین جایگاه مراتع در اقتصاد و نقش آن در حفاظت آب و خاک، مطالعه و مدیریت مناسب مراتع اهمیت می­یابد. به منظور ارزیابی قابلیت تصاویر چند طیفی ماهواره­های Sentinel 2 و Spot 5 در تهیه نقشه تراکم مرتع، حوزه آبخیز کشکان میانی در استان لرستان انتخاب گردید. تصاویر با استفاده از نقاط کنترل زمینی و مدل رقومی ارتفاعی منطقه با دقت کمتر از 21/0 پیکسل تصحیح هندسی شدند. طبقه­بندی نظارت شده با استفاده از الگوریتم­های طبقه­بندی به روش متوازی السطوح، حداقل فاصله، حداکثر احتمال و شبکه عصبی بر روی تصویر چند طیفی اصلی هر ماهواره و همچنین بر روی تصویر ادغام شده Spot 5 انجام شد و نقشه تراکم مرتع در سه طبقه تراکمی 25-5، 50-25 و 50 درصد به بالا تهیه شد. به منظور صحت طبقه­بندی­، 117 نقطه کنترل زمینی بر روی نقشه توپوگرافی منطقه مشخص و مختصات تعیین شده به دستگاه موقعیت یاب جهانی (GPS) داده شد و مکان دقیق نقاط در منطقه مورد مطالعه تعیین و در نهایت نقشه واقعیت زمینی منطقه تهیه شد. بررسی صحت تصاویر طبقه­بندی شده نشان داد که تصویر Spot 5 با ترکیب باندی PCA-3-1 و الگوریتم طبقه­بندی شبکه عصبی با صحت کلی 53/70 درصد و ضریب کاپا 65/0 نسبت به تصویر Sentinel 2 با ترکیب باندی PCA-8-2 و الگوریتم طبقه­بندی شبکه عصبی با صحت کلی 72/65 و ضریب کاپا 08/0 نتیجه بهتری ارائه داده است. این تحقیق نشان داد که تصاویر ماهواره Spot 5 برای تهیه نقشه پوشش مرتع در سه طبقه تراکمی از کارایی بیشتری نسبت به تصاویر ماهواره Sentinel 2 برخوردار می­باشند. از آنجا که فواصل عکس­برداری هوایی از مناطق مرتعی در ایران زیاد است، می­توان از تصاویر ماهواره­ای با قدرت تفکیک مکانی و طیفی مناسب برای تهیه نقش تراکم مرتع، کنترل و جلوگیری از تخریب مراتع در غرب کشور در سری­های زمانی مشخص استفاده کرد.
مراتع دارای ارزش­های مختلفی هستند و از طرف دیگر دارای تغییرات بالای مکانی و زمانی هستند. بنابراین با توجه به تغییرات مداوم مراتع و همچنین جایگاه مراتع در اقتصاد و نقش آن در حفاظت آب و خاک، مطالعه و مدیریت مناسب مراتع اهمیت می­یابد. به منظور ارزیابی قابلیت تصاویر چند طیفی ماهواره­های Sentinel 2 و Spot 5 در تهیه نقشه تراکم مرتع، حوزه آبخیز کشکان میانی در استان لرستان انتخاب گردید. تصاویر با استفاده از نقاط کنترل زمینی و مدل رقومی ارتفاعی منطقه با دقت کمتر از 21/0 پیکسل تصحیح هندسی شدند. طبقه­بندی نظارت شده با استفاده از الگوریتم­های طبقه­بندی به روش متوازی السطوح، حداقل فاصله، حداکثر احتمال و شبکه عصبی بر روی تصویر چند طیفی اصلی هر ماهواره و همچنین بر روی تصویر ادغام شده Spot 5 انجام شد و نقشه تراکم مرتع در سه طبقه تراکمی 25-5، 50-25 و 50 درصد به بالا تهیه شد. به منظور صحت طبقه­بندی­، 117 نقطه کنترل زمینی بر روی نقشه توپوگرافی منطقه مشخص و مختصات تعیین شده به دستگاه موقعیت یاب جهانی (GPS) داده شد و مکان دقیق نقاط در منطقه مورد مطالعه تعیین و در نهایت نقشه واقعیت زمینی منطقه تهیه شد. بررسی صحت تصاویر طبقه­بندی شده نشان داد که تصویر Spot 5 با ترکیب باندی PCA-3-1 و الگوریت
مراتع دارای ارزش­های مختلفی هستند و از طرف دیگر دارای تغییرات بالای مکانی و زمانی هستند. بنابراین با توجه به تغییرات مداوم مراتع و همچنین جایگاه مراتع در اقتصاد و نقش آن در حفاظت آب و خاک، مطالعه و مدیریت مناسب مراتع اهمیت می­یابد. به منظور ارزیابی قابلیت تصاویر چند طیفی ماهواره­های Sentinel 2 و Spot 5 در تهیه نقشه تراکم مرتع، حوزه آبخیز کشکان میانی در استان لرستان انتخاب گردید. تصاویر با استفاده از نقاط کنترل زمینی و مدل رقومی ارتفاعی منطقه با دقت کمتر از 21/0 پیکسل تصحیح هندسی شدند. طبقه­بندی نظارت شده با استفاده از الگوریتم­های طبقه­بندی به روش متوازی السطوح، حداقل فاصله، حداکثر احتمال و شبکه عصبی بر روی تصویر چند طیفی اصلی هر ماهواره و همچنین بر روی تصویر ادغام شده Spot 5 انجام شد و نقشه تراکم مرتع در سه طبقه تراکمی 25-5، 50-25 و 50 درصد به بالا تهیه شد. به منظور صحت طبقه­بندی­، 117 نقطه کنترل زمینی بر روی نقشه توپوگرافی منطقه مشخص و مختصات تعیین شده به دستگاه موقعیت یاب جهانی (GPS) داده شد و مکان دقیق نقاط در منطقه مورد مطالعه تعیین و در نهایت نقشه واقعیت زمینی منطقه تهیه شد. بررسی صحت تصاویر طبقه­بندی شده نشان داد که تصویر Spot 5 با ترکیب باندی PCA-3-1 و الگوریتم طبقه­بندی شبکه عصبی با صحت کلی 53/70 درصد و ضریب کاپا 65/0 نسبت به تصویر Sentinel 2 با ترکیب باندی PCA-8-2 و الگوریتم طبقه­بندی شبکه عصبی با صحت کلی 72/65 و ضریب کاپا 08/0 نتیجه بهتری ارائه داده است. این تحقیق نشان داد که تصاویر ماهواره Spot 5 برای تهیه نقشه پوشش مرتع در سه طبقه تراکمی از کارایی بیشتری نسبت به تصاویر ماهواره Sentinel 2 برخوردار می­باشند. از آنجا که فواصل عکس­برداری هوایی از مناطق مرتعی در ایران زیاد است، می­توان از تصاویر ماهواره­ای با قدرت تفکیک مکانی و طیفی مناسب برای تهیه نقش تراکم مرتع، کنترل و جلوگیری از تخریب مراتع در غرب کشور در سری­های زمانی مشخص استفاده کرد.
م طبقه­بندی شبکه عصبی با صحت کلی 53/70 درصد و ضریب کاپا 65/0 نسبت به تصویر Sentinel 2 با ترکیب باندی PCA-8-2 و الگوریتم طبقه­بندی شبکه عصبی با صحت کلی 72/65 و ضریب کاپا 08/0 نتیجه بهتری ارائه داده است. این تحقیق نشان داد که تصاویر ماهواره Spot 5 برای تهیه نقشه پوشش مرتع در سه طبقه تراکمی از کارایی بیشتری نسبت به تصاویر ماهواره Sentinel 2 برخوردار می­باشند. از آنجا که فواصل عکس­برداری هوایی از مناطق مرتعی در ایران زیاد است، می­توان از تصاویر ماهواره­ای با قدرت تفکیک مکانی و طیفی مناسب برای تهیه نقش تراکم مرتع، کنترل و جلوگیری از تخریب مراتع در غرب کشور در سری­های زمانی مشخص استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of Multi-Spectral Satellite Images of Spot5 and Sentinel 2 for Mapping of Rangeland Vegetation Covers Density in the Middle Kashkan Basing (Lorestan Province)

نویسندگان [English]

  • Taha mansouri 1
  • javad varvani 2
  • Hamid Toranjzar 1
  • Nourollah Abdi 1
  • Abbas Ahmadi 1
1 College of Agriculture and Natural Resources, Islamic Azad University, Branch of Arak
2 Associate Professor, College of Agriculture and Natural Resources, Islamic Azad University, Branch of Arak
چکیده [English]

The values of rangeland vary, and there are significant temporal and spatial changes. Since rangeland are constantly changing, they play a crucial role in the economy and in the protecting the land and water. So it is crucial to grasp them and manage them properly. The middle "Kashkan" watershed in the "Lorestan" province was chosen in order to assess the capability of multi-spectral pictures from Sentinel 2 and Spot 5 satellites in creating rangeland density maps. Using ground control points and the region's digital height model, the photos were geometrically adjusted with an accuracy of less than 0.21 pixels. On the primary multispectral image of each satellite as well as the integrated image of Spot 5 and the rangeland density map, supervised classification utilizing the parallelepiped, minimum distance, maximum likelihood, and neural network classification techniques was carried out. Three density classes—5–25, 25–50, and 50% and above—were prepared for it. 117 ground control points were located on the topographic map of the area in question in order to measure the classification's accuracy. The global positioning system (GPS) was then used to pinpoint the locations of the points in the study area, and the ground reality map of the region was created using the determined coordinates. The Spot 5 image with PCA-3-1 band composition and a neural network classification algorithm, which had an overall accuracy of 70.53% and a Kappa coefficient of 0.65 compared to the Sentinel 2 image with PCA-8-2 band composition and a neural network classification algorithm, which had an overall accuracy of 65.72 and a Kappa coefficient of 0.08, produced better results, according to a study that examined the accuracy of classified images. This study showed that Spot 5 satellite photos outperform Sentinel 2 satellite images when creating rangeland coverage maps with three different densities. It is possible to use satellite images with spatial and spectral resolution suitable for creating a map of rangeland density and regulating and trying to prevent the destruction of rangeland in the west of the country over a certain period of time because the distances for aerial photography of rangeland areas in Iran are great.

کلیدواژه‌ها [English]

  • Supervised classification
  • multispectral
  • band composition
  • overall accuracy
  • kappa coefficient
Abdi, A.M. 2020. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GIScience & Remote Sensing, 57 (1):1-20.
Abdolahi H., and Joybari. 2012. Comparative evaluation of IRS-P6-LISS-III and LISS IV images for canopy cover mapping of Zagros forests (Case Study: Javanroud Forests).  Journal of Wood & Forest Science and Technology. 19 (1): 43-60. (In Persian)
Bazrafkan A., Bavaghar M.P., and Fathi P. 2014. Capability of Liss III data for forest canopy density mapping in Zagros forests (Case study: Marivan Forests). Iranian Journal of Forest. 6 (4): 387-401. (In Persian)
Delfan E., Naghavi H., Maleknia R., and Noraldini A. 2017. Investigating the effectiveness of Sentinel 2 satellite images and non-parametric classification methods in preparing land use maps. The first national conference on applied research in science and engineering. 1-12. (In Persian)

Fathizad H., Nohegar A., Faramarzi M., and Tazeh M. 2013. An Investigation of Changes in land Use According to the Analysis of Landscape Ecology Metrics by Using Remote Sensing and GIS in Arid and Semi-arid Region of Dehloran. Town and country planning, 5 (1): 79-99. (In Persian(

Ghanbari Motlag M., Babaie Kafaky S., Mataji A., and Akhavan R. 2020. Estimation of Forest Above Ground Biomass in Hyrcanian Forests Using Satellite Imagery. Scientific & Research Journals Management System. 22 (5): 1-13. (In Persian).
Gómez C., White J.C., and Wulder, M.A. 2016. Optical remotely sensed time series data for land cover classification: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 116: 55-72.
Han, A.J.G., Zhange, Y. J., Wang, B C. J., W. M., BaiC. Y. R. Wang D, and Han, B. (2008). Rangeland degradation and restoration management in China. The Rangeland Journal, 30: 233-239.
Hu Y., Zhang Q., Zhang, Y., and Yan H. 2018. A deep convolution neural network method for land cover mapping: A case study of Qinhuangdao, China. Remote Sensing, 10 (12): 1-16.
Huong N.T.T., Tuan T.A., Thach V.T., and Tin H.C. 2017. A review of seagrass studies by using satellite remote sensing data in the Southeast Asia: status and potential. Vietnam Journal of Science and Technology, 55 (4C): 148-154.
Jensen, J.R. 2015. Digital Image Processing, 4th Edition, University of South Carolina.
Karami Z., Sharifi Z. 2020. Assessment Effect of Land Use Change from Rangeland to Rainfed Wheat on Soil Physical and Chemical Properties Using Soil Quality Index. Applied Soil Research, 8(2): 201-213. (In Persian)
Lindenmayer D.B., and Likens G.E. 2010. The science and application of ecologicalmonitoring. Biological. Conservation. 143, 1317–1328.
Mirdavoodi H.R., Zahedi H., Shakoei M., and Tourkan J. 2007. Relationships between the most important ecological factors and rangeland vegetative using multivariate data analysis methods. (case study :South of Markazi province). Iranian Journal of Range and Desert Research. 13 (3): 201-211. (In Persian)
Mohamadi P., Ahmadi A., Feyzizadeh B., Jafarzadeh A.A and Rahmati M. 2021. Evaluation of pixel and object-oriented classification techniques for detection and zoning of erosion lands using sentinel-2 remote sensing data (case study: Lighvan watershed). Applied Soil Research. 9 (1): 28-40. (In Persian)
Moharrami M., and Neysani Samany N. 2022. Comparative assessment of Deep Learning and Random Forest methods for urban land cover classification (A case study Tabriz city). Journal of Geomatics Science and Technoligy. 11 (4): 11-23. (In Persian)

Motamedi J., Jalili A., Arzani H., and Khodagholi M. 2020. Causes of rangeland degradation in the country and solutions to get out of the current situation. Journal of IRAN NATURE. 5(4): 21-44. (In Persian).

Pakkhesal E., and Bonyad A.E. 2013. Classification and delineating natural forest canopy density using FCD model (Case study: Shafarud area of Guilan). Iranian Journal of Forest and Poplar Research, 21 (1): 99-114 (In Persian)
Phiri D., Simwanda M., Salekin S., Nyirenda V.R., Murayama Y., and Ranagalage, M. 2020. Sentinel-2 data for land cover/use mapping: a review. Remote Sensing, 12(14): 1-35.
Raufirad V., sabouhi R., shojae G., and bagheri., S. 2017. Study on the relationship between rangeland size, number of animal units and rangeland users with range condition (Case study: Range management plans of Isfahan province). Iranian Journal of Range and Desert Research, 24 (1): 57-66. (In Persian)
Rudiastuti A.W., Yuwono, D.M., and Hartini S. 2018, June. Mangrove mapping using SPOT 6 at East Lombok Indonesia. In IOP Conference Series: Earth and Environmental Science, 65 (1): 1-12.
Sekovski I., Stecchi F., Mancini F., and Del Rio, L. 2014. Image classification methods applied to shoreline extraction on very high-resolution multispectral imagery. International Journal of Remote Sensing, 35 (10): 3556-3578.
Thanh Noi P., and Kappas, M. 2017. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors, 18(1): 1-18.
Yousefi S., Mirzaee S., Almohamad H., Al Dughairi A.A., Gomez C., Siamian N., Alrasheedi M. and Abdo, H.G. 2022. Image classification and land cover mapping using sentinel-2 imagery: optimization of SVM parameters. Land, 11(7): 1-14.