برآورد و پهنه‌بندی عامل فرسایش‌پذیری خاک درحوضه آبخیز علی‌آباد رودبار، استان گیلان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشگاه گیلان

2 دانش آموخته گروه علوم و مهندسی خاک، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

3 هیات علمی، گروه علوم و مهندسی خاک، دانشگاه گیلان

4 عضو هیئت علمی گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه تهران

10.30466/asr.2024.121429

چکیده

فرسایش خاک در مناطق بالا­دست، نقش مهمی در ورود رسوبات به سد­ها دارد. تجمع رسوبات موجب کاهش عمر مفید سد، مشکلات زیست­محیطی و تشدید سیلاب می­شود. میزان فرسایش علاوه بر اقلیم، توپوگرافی، پوشش گیاهی و مدیریت اراضی به خصوصیات خاک و فرسایش­پذیری آن نیز بستگی دارد. در این پژوهش، عامل فرسایش­­پذیری خاک و همچنین توزیع مکانی آن در بخشی از حوضه آبخیز علی­آباد رودبار در بالادست سد سفیدرود، با استفاده از توابع انتقالی مختلف شامل KUSLE، KEPIC و KDg بررسی شد. نمونه­های خاک از عمق صفر تا 10 سانتی­متری برداشته و توزیع اندازه ذرات اولیه خاک، میزان کربن آلی و پایداری خاکدانه­ها اندازه­گیری شد. عامل فرسایش­پذیری معادله جهانی هدر­رفت خاک  (KUSLE)به دو شکل با و بدون کد­های ساختمان و نفوذ­پذیری محاسبه و به ترتیب KUSLEi و KUSLEf نامیده شدند. نتایج نشان داد که خاک­های مورد­مطالعه عمدتاً دارای بافت سبک بوده و KUSLEi  در دامنه 011/0 تا 040/0 تن­ساعت بر مگا­ژول میلی­متر برآورد گردید. کم­ترین عامل­فرسایش­پذیری به KDg تعلق داشت که به طور معنی­دار کم­تر از عامل فرسایش­پذیری محاسبه­شده با سایر توابع انتقالی بود. تمامی عوامل فرسایش­پذیری محاسبه­شده دارای همبستگی معنی­دار منفی با میانگین وزنی قطر خاکدانه بودند که  KUSLEi و KDg به­ترتیب بیش­ترین و کم­ترین همبستگی با MWD  را داشتند. تمام عامل­های فرسایش­پذیری دارای وابستگی مکانی از درجه متوسط بودند اما KUSLEi  وابستگی مکانی قوی را نشان داد. بنا­بر­این در مجموع می­توان نتیجه گرفت که نقشه پهنه­بندی KUSLEi ،  تهیه­شده توسط روش کریجینگ، می­تواند شاخص مناسبی از فرسایش­پذیری خاک­های منطقه مورد­مطالعه باشد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation and Zoning of Soil Erodibility Factor in Aliabad Watershed, Roodbar, Guilan Province

نویسندگان [English]

  • Sepideh Abrishamkesh 1
  • Masoomeh zahmatkesh 2
  • Nafiseh Yaghmaeian 3
  • Hossein Asadi 4
1 1. Department of Soil Science and Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
2 1. Department of Soil Science and Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
3 1. Department of Soil Science and Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
4 2. Department of Soil Science, Faculty of Agricultural Engineering and Technology , University of Tehran, Iran. Karaj
چکیده [English]

Soil erosion in upstream areas has an important role in sediment entry to dams. Sediment accumulation result in decreases of dam service life, environmental problems, and acceleration of floods. In addition to climate, topography, vegetation cover and land management, soil erosion amount depends on soil characteristics and its erodibility.  In this research, soil erodibility factor and its special distribution was assessed by using of various pedotransfer functions including KUSLE, KEPIC and KDg in a part of Aliabad watershed of Roodbar, located at upstream of Sefidrood dam. The soil samples were collected from 0-10 cm depth and size distribution of soil primary particles, organic carbon content, and aggregates stability were measured. The KUSLE was calculated in two ways without codes of soil structure and permeability, and with respective codes, named as KUSLEi, and KUSLEf, respectively. The results showed that studied soils generally had coarse texture, and KUSLEi was estimated low to moderate in range of 0.11 to 0.040 ton h MJ-1 mm-1. The least soil erodibility factor belongs to KDg, which was significantly lower than the soil erodibility factors calculated by other pedotransfer functions. All of the calculated erodibility factors had significant negative correlation with mean weight diameter of aggregates which KUSLEi and KDg showed the most and least correlation with MWD, respectively. All of the erodibility factors had moderate spatial dependence, however KUSLEi showed strong spatial dependence. Therfore, it generally can be concluded that zoning map of KUSLEi  generated via kriging can be a suitable indicator of the studied soils erodibility.

کلیدواژه‌ها [English]

  • Soil Erosion
  • Aggregate Stability
  • pedotransfer function
  • mean weight diameter of aggregate
  • spatial dependence
Addis H.K., and Klik A. 2015. Predicting the spatial distribution of soil erodibility factor using USLE nomograph in an agricultural watershed, Ethiopia. International Soil and Water Conservation Research, 3(4): 282-290.
Amirabedi H., Asghari Sh. Mesri T., and Balandeh N. 2016. Prediction of mean weight diameter of aggregates using artificial neural network and regression models. Applied Soil Research, 4(1): 39-53. (In Persian)
Annabi M., Raclot D., Bahri H., Bailly G.S., Gomez C., and Bissonnais Y.L. 2017. Spatial variability of soil aggregate stability at the scale of an agricultural region in Tunisia. Catena, 153: 157–167.
Arabkhedri M., Gerami Z., Shadfar S., Bayat R., Parvizi Y., and Nabipay Lashkarian S. 2020. Comparing the Performance of Several Erodibility Indices' Equations of USLE Model at Laboratory Condition. Iranian Journal of Soil and Water Research, 51(7): 1725-1736. (In Persian)
Asghari S. H., Hatamvand M., and Hasanpour Kashani M.  2021. Estimating wet aggregate stability from easily available soil properties in north wast of lake urmia. Applied Soil Research, 9(2): 102-115. (In Persian)
Ayoubi Sh., Mohammad Zamani S., and Khormali F. 2010. Wheat yield prediction through soil properties using principle component analysis. Iranian Journal of Soil and Water Research, 49(1): 51-57. (In Persian)
Baruah S., Kumaraperumal R., Kannan B., Ragunath K.P., and Backiyavathy M.R. 2019.  Soil erodibility estimation and its correlation with soil properties in Coimbatore district. International Journal of Chemical Studies, 7(3): 3327-3332.
Barthès B., Albrecht A., Asseline L., De Noni G., and Roose E. 1999. Relationships between soil erodibility and topsoil aggregate stability or carbon content in a cultivated Mediterranean highland (Aveyron, France). Communication in Soil Science and Plant Analysis, 30: 1929–1938.
Braga Pereira E.C., Bezerra Lopes F., Firmino Gomes F. E., Masceno de almeida A. M., Messias de Magalhaes A. C. and Maia de Andrade, E. 2017.  Determining the Soil Erodibility for an Experimental Basin in the Semi-Arid Region Using Geoprocessing. American Journal of Plant Sciences 8: 3174-3188.
Cambule A.H., Rossiter D.G., Stoorvogel J.J., and Smaling E.M.A. 2014. Soil organic carbon stocks in the Limpopo National Park, Mozambique: Amount, spatial distribution and uncertainty. Geoderma, 213:46–56.
Cambardella C .A., Moorman T. B., Novak J. M., Parkin T. B., Karlen D. L., Turco R.F. and Konopka A. E.1994. Field-Scale Variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58: 1501-1511.
Degens B., and Sparling G. 1996. Changes in aggregation do not correspond with changes in labile organic C fractions in soil amended with C14-glucose. Soil Biology and Biochemistry, 28:453–462.
Erktan A., Cécillon L., Graf F., Roumet C., Legout C., and Ray F. 2016. Increase in soil aggregate stability along a Mediterranean successional gradient in severely eroded gully bed ecosystems: combined effects of soil, root traits and plant community characteristics. Plant and Soil, 398: 121-137.
Esmaeelnezhad L., Seyedmohammadi J., and Shabanpour M. 2012. Effects of chemical and mineralogical properties of marls on different erosion types in the south of Guilan province. Watershed Management Research (Pajouhesh & Sazandegi), 98: 2-14.
FAO. 2019. Soil erosion: The greatest challenge to sustainable soil management.Rome, 100p.
Ganawa E.S.M., Soom M.A.M., Musa M.H., Shariff A.R.M.,and Wayayok A.2003. Spatial variability of total nitrogen, and available phosphorus of large rice field in Sawah Sempadan Malaysia, Science  Asia - Journa , 29: 7-12.
Gao L.Q., Bowker M.A., Xu M.X., Sun H., Tuo  D.F., and Zhao Y.G. 2017. Biological soil crusts decrease erodibility by modifying inherent soil properties on the Loess Plateau, China. Soil Biology and Biochemistry. 105, 49–58.
Gee G.W., and Bauder J.W. 1986. Particle size analysis. In: Klute A (Ed.), Methods of soil analysis. Part 1. Physical and mineralogical methods. Agron. Monogr. 9 2nd edn. ASA and SSSA, Madison, WI, pp. 404–408.
Hillel D. 2004. Environmental Soil Physics. New York, USA: Academic Press.
Khosraviaqdam K. Momtaz H. R. and Asadzadeh F. 2019. Estimation of Soil erodibility factor of USLE model and its relationship with landscape features in some parts of Nazzlo-Chay basin, Iran. Applied Soil Research, 7(1):31-43. (In persian)
Lado M.,  Ben-Hur M., and Shainberg I .2004. Soil wetting and texture effects on aggregate stability, seal formation, and erosion. Soil Science Society of American Journal, 68(6):1992–1999.
Lal R. 2019. Accelerated Soil erosion as a source of atmospheric CO2. Soil and Tillage Research, 188: 35-40.
Le Bissonnais Y. 1996. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. European Journal of Soil Science, 47: 425-437.
Marques V.S., Ceddia M.B., Antunes M.A.H.,Carvalho D.F., Anache J.A.A., Rodrigues D.B.B., and Oliveira P.T.S. 2019. USLE K-Factor Method Selection for a Tropical Catchment. Sustainability, 11: 1840.
Mbanjwa V.E., Hughes J.C., and Muchaonyerwa P. 2022. Organic Carbon and Aggregate Stability of Three Contrasting Soils as Affected by Arable Agriculture and Improved Pasture in Northern KwaZulu-Natal, South Africa. Journal of Soil Science and Plant Nutrition, 22: 2378–2391.

Mousavi S. A., Ranjbar Fordoie A., Mousavi S. H., and Sadati nejad S. J. 2017 a. Modeling of soil erodibility in the Khoor and Biabanak region. Iranian Journal of Rangeland and Desert Research, 24(3): 658-675. (In persian)

Mousavi S.R., Sarmadian F., Dehghani S., Sadikhani M.R., and Taati A. 2017 b. Evaluating inverse distance weighting and kriging methods in estimation of some physical and chemical properties of soil in Qazvin Plain. Eurasian Journal of Soil Science, 6: 4. 327-336.
Mulla D., and McBratney A.B. 2001. Soil spatial variability. Soil physics companion, 343.
Nelson D.W., and Sommers L.E. 1996. Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 3. Chemical Methods, 5: 961-1010.
Nciizah A. D., and Wakindiki I. I. C. 2014. Physical indicators of soil erosion, aggregate stability and erodibility. Archives of Agronomy and Soil Science, 61:827–842.
Nimmo J.R., and Perkins K.S.2002. Wet aggregate stabillity. In: Dane, J.H. and Topp, G.C. Methods of soil analysis. Physical methods, Soil science society of America, Inc, Madison, Wisconsin, USA, Part 4, 321p.
Oades J. M.1993.The role of biology in the formation, stabilization and degradation of soil structure. Geoderma, 56:377–400.
Omidvar E., Kavian A. Solaimani K., and Mashari. S. 2016. Investigation of applicability of soil map units to estimate the spatial variability of soil erodibility. Desert Ecosystem Engineering Journal 4(9): 95-107. (In persian).
Poch R. M., and Antunez M. 2010. Aggregate development and organic matter storage in Mediterranean mountain soils, Pedosphere, 20: 702–710.
Renard K., Foster G., Weesies G., McCool D., and Yoder D. 1997. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE), USDA Agriculture Handbook, 703, 407 pp.

Rezaei H., Esmaeel Nejad L., Saadat  S., and Malaki P. 2018. Mapping of Effective Parameters on Paddy Soils Fertility Quality for Optimum Management of Fertilizer Application. Journal of Water and Soil Conservation, 25(4): 259-274. (In persian)

Robinson D. A., Panagos P., and Borrelli P.2017. Soil natural capital in Europe; a framework for state and change assessment. Scientific Reports, 7(1): 6706.
Römkens M. J. M., Young R. A., Poesen J. W.A, McCool D. K., El-Swaify S. A., and Bradford J. M. 1997. Chapter Soil erodibility factor In: K. G. Renard, G. R. Foster, G. A. Weesies, D. K. McCool, & D. C. Yoder (Eds.), Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Equation (RUSLE). Agriculture Handbook No. 703. Washington, D.C.: US Department of Agriculture.
Soil Survey Staff K.L. 1993. Soil survey manual. USDA-SCSagriculturalhandbook430-V-SSM. Washington,DC,USA:U.S.Government Printing Office.
Shi Z., Yan F., Li L., Li Z., and Cai C. 2010. Interrill erosion from disturbed and undisturbed samples in relation to topsoil aggregate stability in red soils from subtropical China. Catena, 81: 240–248.
Stanchi S., Freppaz M., and Zanini E. 2012. The influence of Alpine soil properties on shallow movement hazards, investigated through factor analysis, Natural Hazards and Earth System Sciences, 12: 1845– 1854.
Wang B., Zheng F., Romkens M.J.M., and Darboux F. 2013. Soil erodibility for water erosion: A perspective and Chinese experiences. Geomorphology, 187: 1-10.
Tejada M., and González J. L. 2006. The relationship between erodibility and erosion in a soil treated with two amendments, Soil and Tillage Research, 9: 186–198.
Torri D., Poesen J., and Borselli L. 1997. Predictability and uncertainty of the soil erodibility factor using a global dataset, Catena, 31: 1–22,
Visconti-Moreno E. F., and Valenzuela-Balcázar I. G. . 2019. Impact of soil use on aggregate stability and its relationship with soil organic carbon at two different altitudes in the Colombian Andes. Agronomía Colombiana, 37(3): 263-273
Wang H., Zhamg G., Li N. Zhang, B.and Yang, H. 2019. Variation in soil erodibility under five typical landuses in a small watershed on the Loess Plateau,China. Catena, 24-35.
Wischmeier W.H., and Smith D.D. 1978. Predicting rainfall erosion losses: a guide to conservation planning, United States Department of Agriculture Agricultural Handbook, 537. U.S. Government Printing Office, Washington D.C., USA.
Williams J. R.1990. The erosion-productivity impact calculator (EPIC) model: A case history, Philosophical. Transactions of the royal Society biological sciences, 329: 421–428.

Zare Chahooki M. A., Abbasi M., and Azarnivand H. 2015. Preparation Map the spatial distribution some of soil properties using Geostatistics (Case Study: Taleghan miany rangeland). Journal of Range management, 2(2), 1-20.

Zhang X.Y., Sui Y.Y., Zhang X.D., Meng K. and Herbert S.J. 2007. Spatial variability of nutrient properties in black soil of northeast China. Pedosphere, 17 (1): 19–29.
Zhang W., and Huang B. 2015. Soil erosion evaluation in a rapidly urbanizing city (Shenzhen, China) and implementation of spatial land-use optimization. Environmental Science and Pollution Research, 22(6):4475-90
 Zheng Z., Zhang F., Chai X., Zhu Z. and Ma, F. 2009. Spatial estimation of soil moisture and salinity with neural kriging. In :IFIP International federation for information processing Volume 294,
International Conference on Computer and Computing Technologies in Agriculture, Vol:2, Eds. D. Li, Z. Chunjiangv (Boston:Springer), pp. 1227-1237.
Zhu Q., and Lin H.S. 2010. Comparing ordinary kriging and regression kriging for soil properties in contrasting landscapes. Pedosphere, 20: 594–606.