نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری علوم باغبانی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه

2 استادیار گروه علوم باغبانی دانشگاه ارومیه

3 استادیار گروه علوم خاک، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه.

4 استادیار گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه.

5 دانشیار گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه.

چکیده

مایه­زنی میکروبی، در بهبود رشد و افزایش تحمل گیاهان به تنش­های محیطی و پالایش سبز خاک­های آلوده به فلزات سنگین، مؤثرند. این مطالعه به‌منظور بررسی تأثیر  مایه­زنی قارچ Piriformospora indica در گیاه­پالایی سرب توسط گونه چمنی فستوکای پابلند (Festuca arundinacea) رقم Tomahawk در سطوح مختلف آلودگی سرب، در آزمایشی گلدانی به‌صورت فاکتوریل در قالب طرح پایه بلوک­های کامل تصادفی و در سه تکرار اجرا شد که عامل‌های آزمایشی شامل مایه­زنی قارچ در دو سطح (مایه­زنی و عدم مایه­زنی با قارچindica  P.) و تنش آلودگی سرب در سه سطح (0، 500 و 800 میلی­گرم بر کیلوگرم خاک) بودند. سرب در هر دو سطح آلودگی 500 و 800 میلی­گرم بر کیلوگرم خاک به­ترتیب سبب کاهش 46/31 و 98/43 درصد وزن خشک اندام هوایی، 2/31 و 32/44 درصد عملکرد نسبی شاخساره، 89/10 و 74/15 درصد محتوای نسبی آب برگ، 8/47 و 55/47 درصد محتوای کلروفیل a، 41/47 و 22/50 درصد محتوای کلروفیل b، 22/5 و 64/11 درصد غلظت فسفر ریشه، 44/11 و 47/14 درصد غلظت نیتروژن برگ و افزایش 49/27 و 89/20 درصد محتوای پرولین و 13/6 و 71/14 درصد قند محلول برگ شد.  تیمار مایه­زنی با قارچ P. indica نسبت به تیمار بدون مایه­زنی در هر دو سطح آلودگی500 و 800 میلی­گرم بر کیلوگرم خاک سرب به­ترتیب با افزایش 34/26 و 67/18 درصدی انباشت سرب در ریشه و افزایش 13/64 و 83/59 درصد سرب قابل استخراج توسط ریشه سبب افزایش 22/40 و 12/18 درصد وزن تر ریشه، 22/51 و 59/50 درصد وزن خشک ریشه، 32/44 و 72/40 درصد محتوای کلروفیل a، 98/16 و 95/33 درصد محتوای کاروفیل b، 71/15 و 6/17 درصد غلظت فسفر ریشه، 21/16 و 92/13 درصد غلظت فسفر برگ شد. می­توان نتیجه­گیری کرد که مایه­زنی میکروبی با قارچ P. indica باعث افزایش انباشت سرب در ریشه­ی گیاه چمن فستوکا می­شود. بنابراین مایه­زنیقارچ P. indica می­تواند به‌عنوان یک تیمار زیستی مفید در بهبود کارایی گیاه­پالایی سرب توسط گیاه چمن فستوکا رقم Tomahawk در خاک­های آلوده استفاده شود.

کلیدواژه‌ها

عنوان مقاله [English]

Consequences of Endophytic Fungus Piriformospora Indica Inoculation on Phytoremediation of Lead by Tall Fescue (Festuca Arundinacea cv. Tomahawk)

نویسندگان [English]

  • mahdieh mirzaei mashhood 1
  • Javad Rezapour fard 2
  • mohsen barin 3
  • hadi alipour 4
  • zohreh Jabbarzadeh 5

1 Ph.D. Student, Department of Horticultural Sciene, Faculty of Agriculture, Urmia University, Urmia.

2 Assistant professor, Department of Horticulture science, Faculty of Agriculture, Urmia university

3 Assistant Professor, Department of Soil Sciene, Faculty of Agriculture, Urmia University, Urmia.

4 Assistant Professor, Department of Plant Production and Genetic, Faculty of Agriculture, Urmia University, Urmia.

5 Associate Professor, Department of Horticultural Sciene, Faculty of Agriculture, Urmia University, Urmia

چکیده [English]

Microbial inoculation is effective in improving plant growth and tolerance to environmental stresses, and green refinement of contaminated soils with heavy metals. This study was carried out in order to evaluate the effect of Piriformospora indica inoculation on phytoremediation of lead by tall fescue (Festuca arundinacea cv. Tomahawk) at different levels of Pb contamination. It was performed in pot experiment as factorial based on randomized complete block design with three replications which the experimental factors included inoculation, and non-inoculation with P. indica, and Pb contamination (0, 500, and 800 mg kg-1 of soil). Pb contamination at levels of 500 and 800 mg kg-1 of soil caused a decrease of 31.46% and 43.98% of shoot dry weight, 31.2% and 44.32% of relative yield, 10.89%, and 15.74% of leaf relative water content, 47.8%, and 47.55% of chlorophyll a, 47.41%, and 50.22% of chlorophyll b, 5.22%, and 11.64% of root phosphorus content, 11.44%, and 14.47% leaf nitrogen content, and increase of 27.49% and 20.89% of leaf proline and 6.13% and 14.71% of leaf soluble sugars respectively. P. indica inoculation in compared with non- inoculation in Pb contamination at both 500 and 800 mg kg-1 of soil by increasing the accumulation of 26.34% and 18.67% Pb in roots as well as increasing the 64.13% and 59.83% root metal extraction caused an increase of 40.22% and 18.12% of root fresh and 51.22% and 50.59% dry weight, 44.32% and 40.72% of chlorophyll a and 16.98% and 33.95% of chlorophyll b content, 15.71% and 17.6% of root phosphorus concentration and 16.21% and 13.92% of shoot phosphorus concentration, respectively. It is inferred that microbial inoculation with P. indica increases the accumulation of Pb in the roots of Festuca arundinacea and it is suggested that P. indica-inoculated Festuca arundinacea cv. Tomahawk can be used as biologically useful approach in phytoremediation of Pb-contaminated soils.

کلیدواژه‌ها [English]

  • Heavy metals
  • transfer factor
  • leaf relative water content
  • compatible solutions
Abdel-Salam A.A., Salem H.M., Abdel-Salam M.A., and Seleiman, M.F. 2015. Phytochemical removal of heavy metal-contaminated soils. In:  Sherameti I., and Varma A. (eds.), Heavy Metal Contamination of Soils, Monitoring and Remediation, Soil Biology Book Series, Vol. 44, Springer Cham, pp. 299-309.
Alsokari S.S., and Aldesuquy H.S. 2011. Synergistic effect of polyamines and waste water on leaf turgidity, heavy metals accumulation in relation to grain yield. Journal of Applied Sciences Research, 7(3): 376-384.‏
Appenroth K.J. 2010. Definition of “heavy metals” and their role in biological systems. In: Soil Biology, vol 19. Springer, Berlin, Heidelberg, pp. 19-29.
Arias J.A., Peralta-Videa J.R., Ellzey J.T., Ren M., Viveros M.N., and Gardea-Torresdey J.L. 2010. Effects of Glomus deserticola inoculation on Prosopis: enhancing chromium and lead uptake and translocation as confirmed by X-ray mapping, ICP-OES and TEM techniques. Environmental and Experimental Botany, 68(2): 139-148.‏
Ashraf M., and Foolad M.R. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2): 206-216.
Aslani Z., Hassani A., Abdullahi Mendulkani B., Barin M., and Maleki R. 2022. The effect of inoculation with growth-promoting microorganisms on some growth and physiological characteristics and nutrient content of Salvia officinalis under salinity stress. Applied Soil Research, (9)3: 104- 122. (In Persian)
Augé R.M. 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11(1): 3-42.‏
Barazani O., von Dahl C.C., and Baldwin I.T. 2007. Sebacina vermifera promotes the growth and fitness of Nicotiana attenuata by inhibiting ethylene signaling. Plant Physiology, 144(2): 1223-1232.‏
Barceló J.U.A.N., and Poschenrieder, C. 1990. Plant water relations as affected by heavy metal stress: a review. Journal of Plant Nutrition, 13(1): 1-37.
Barin M. 2014. The role of soil microbes in green remediation of cadmium-contaminated soil by Onopordon acanthium L. Applied Soil Research, 2(1): 59-70. (In Persian)
Barrs H.D., and Weatherley P.E. 1962. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences, 15(3): 413-428.‏
Bates L.S., Waldren R.P., and Teare I.D. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1): 205-207.‏
Baslam M., Garmendia I., and Goicoechea, N. 2013. The arbuscular mycorrhizal symbiosis can overcome reductions in yield and nutritional quality in greenhouse-lettuces cultivated at inappropriate growing seasons. Scientia Horticulturae, 164: 145-154.‏
Boscaiu M., Bautista I., Lidón A., Llinares J., Lull C., Donat P., Mayoral O., and Vicente O. 2013. Environmental-dependent proline accumulation in plants living on gypsum soils. Acta Physiologiae Plantarum, 35(7): 2193-2204.‏
Cariny T. 1995. The Reuse of Contaminated Land. John Wiley and Sons Ltd. Publisher, 219 p.
Carter M.R., and Gregorich E.G. 2008. Soil sampling and methods of analysis (2nd ed.), CRC press, Boca Raton, Florida, 1204 p.
Chen Y.Y., Lou B.G., Gao Q.K., and Lin F.C. 2013. Preliminary study on mechanisms of drought resistance in Brassica napus L. conferred by Piriformospora indica. Journal of Agricultural Biotechnology, 21(3): 272-281.‏
Cotteni A., 1980. Methods of plant analysis: 64-100. In: Westerman,R.L. (Ed.). Soil and Plant Testing, FAO Soil Bulletin.
Emami A. 1996. Plant Analysis Methods. No. 982. Vol. 1. Soil and Water Research Institute Publication, Tehran. (In persian).
Emamian Tabarestani M., Pirdashti H.A. Tajik Ghanbari M.H., Sadeghzadeh F. 2019. Quantification of the symbiosis of Piriformospora indica and Trichoderma longibrachiatum on some growth and physiological traits of canola under lead stress. Journal of Crop Production, 12: 139-156. (In persian).
Fattahi B., Arzani K., Souri M. K., and Barzegar, M. 2021. Morphophysiological and phytochemical responses to cadmium and lead stress in coriander (Coriandrum sativum L.). Industrial Crops and Products, 171- 179.
Firmin S., Labidi S., Fontaine J., Laruelle F., Tisserant B., Nsanganwimana F., and Sahraoui A.L.H. 2015. Arbuscular mycorrhizal fungal inoculation protects Miscanthus× giganteus against trace element toxicity in a highly metal-contaminated site. Science of the Total Environment, 527: 91-99.‏
Ghanem G., Ewald A., Zerche S., and Hennig F. 2014. Effect of root colonization with Piriformospora indica and phosphate availability on the growth and reproductive biology of a Cyclamen persicum cultivar. Scientia Horticulturae, 172: 233-241.‏
Ghabooli M. 2014. Effect of Piriformospora indica inoculation on some physiological traits of barley (Hordeum vulgare) under salt stress. Chemistry of Natural Compounds, 50(6): 1082-1087.‏
Gholinejad B., Khashij S., Ghorbani F., Bandak I. and Farajollahi A. 2020. Effects of lead ions on germination, initial growth, and physiological characteristics of Lolium perenne L. species and its bioaccumulation potential. Environmental Science and Contamination Research, 27(10): 11155-11163.‏
Giovannetti M., and Mosse B. 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 84: 489-500.
Hu M., Shi Z., Zhang Z., Zhang Y., and Li H. 2012. Effects of exogenous glucose on seed germination and antioxidant capacity in wheat seedlings under salt stress. Plant Growth Regulation, 68(2): 177-188.
Hu Z., Xie Y., Jin G., Fu J., and Li H. 2015. Growth responses of two tall fescue cultivars to Pb stress and their metal accumulation characteristics. Ecotoxicology, 24(3): 563-572.‏
Huang B., Duncan R.R. and Carrow R.N. 1997. Drought‐resistance mechanisms of seven warm‐season turfgrasses under surface soil drying: II. Root aspects. Crop Science, 37(6): 1863-1869.‏
Hui F., Liu J., Gao Q., and Lou B. 2015. Piriformospora indica confers cadmium tolerance in Nicotiana tabacumJournal of Environmental Sciences, 37: 184-191.‏
Hussain I., Iqbal M., Qurat-Ul-Ain S.O.B.I.A., Rasheed, R., Mahmood S., Perveen A., and Wahid, A. 2012. Cadmium dose and exposure-time dependent alterations in growth and physiology of maize (Zea mays). International Journal of Agriculture and Biology, 14(6): 959–964
Irigoyen J.J., Einerich D.W., and Sánchez‐Díaz M. 1992. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativd) plants. Physiologia Plantarum, 84(1): 55-60.‏
Kabata-Pendias A. 2000. Trace elements in soils and plants. CRC press.‏
Kadian N., Yadav K., Badda N., and Aggarwal A. 2013. AM fungi ameliorates growth, yield and nutrient uptake in Cicer arietinum L. under salt stress. Russian Agricultural Sciences, 39: 321-329.
Käfer E. 1977. Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Advances in Genetics, 19: 33-131.‏
Kapoor R., and Bhatnagar A.K. 2007. Attenuation of cadmium toxicity in mycorrhizal celery (Apium graveolens L.). World Journal of Microbiology and Biotechnology, 23(8): 1083-1089.‏
Karimi A., Khodaverdiloo H., and Rasouli Sadaghiani M. 2017. Characterisation of growth and biochemical response of Onopordum acanthium L. under lead stress as affected by microbial inoculation. Chemistry and Ecology, 33(10): 963-976.‏
Karimi A., Khodaverdiloo H., and Rasouli‐Sadaghiani M.H. 2018. Microbial‐enhanced phytoremediation of lead contaminated calcareous soil by Centaurea cyanus L. Clean–Soil, Air, Water, 46(2): 1-18.‏
Karimi F., Sepehri M., Afuni M., and Hajabbasi M.A. 2015. Effect of endophytic fungus, Piriformospora indica, on barley resistance to lead. Journal of Science and Technology of Agriculture and Natural Resources, 19: 311- 320. (In Persian)
Kastori R., Petrović M., and Petrović N. 1992. Effect of excess lead, cadmium, copper, and zinc on water relations in sunflower. Journal of Plant Nutrition, 15(11): 2427-2439.‏
Kasotia A., Varma A., and Choudhary D.K. 2015. Pseudomonas-mediated mitigation of salt stress and growth promotion in Glycine maxAgricultural Research, 4(1): 31-41.‏
Kazemalilou S., and Rasouli-Sadaghiani M.H. 2012. Effect of soil cadmium contamination on some physiological parameters of Hyoscyamus plant in presence/absence of growth-promoting microorganisms. Water and Soil Sciece, 22: 4. 17-30. (In Persian)
Kazemalilou S., and Rasouli-Sadaghiani M.H., Khodaverdiloo H., and Barin M. 2013. Cadmium pollution and investigating its effect on the biological quality of the soil and the growth of the Hyoscyamus plant. Applied Soil Research, 1(1): 17-27. (In Persian)
Khademian R., Asghari B., Sedaghati B., and Yaghoubian Y. 2019. Plant beneficial rhizospheric microorganisms (PBRMs) mitigate deleterious effects of salinity in sesame (Sesamum indicum L.): Physio-biochemical properties, fatty acids composition and secondary metabolites content. Industrial Crops and Products, 136: 129-139.‏
Khan M., Rolly N.K., Al Azzawi T.N.I., Imran M., Mun B.G., Lee I.J., and Yun B.W. 2021. Lead (Pb)-induced oxidative stress alters the morphological and physio-biochemical properties of Rice (Oryza sativa L.). Agronomy, 11(3): 409.‏
Khan A.R., Ullah I., Waqas M., Park G.S., Khan A.L., Hong S.J., and Shin J.H. 2017. Host plant growth promotion and cadmium detoxification in Solanum nigrum, mediated by endophytic fungi. Ecotoxicology and Environmental Safety, 136: 180-188.‏
Khodaverdiloo H., Ghorbani Dashtaki S., and Rezapour S. 2012. Lead and cadmium accumulation potential and toxicity threshold determined for land cress and spinach. International Journal of Plant Production, 5(3): 275-282.‏
Khodaverdiloo H., and Hamzenejad Taghlidabad R. 2014. Phytoavailability and potential transfer of Pb from a salt-affected soil to Atriplex verucifera, Salicornia europaea and Chenopodium albumChemistry and Ecology, 30(3): 216-226.‏
Kibria M.G., Islam M., and Osman K.T. 2009. Effects of lead on growth and mineral nutrition of Amaranthus gangeticus L. and Amaranthus oleracea L. Soil Environment, 28(1): 1-6.‏
Li M.S., Luo Y.P., and Su Z.Y. 2007. Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi, South China. Environmental Contamination, 147(1): 168-175.‏
Lichtenthaler H.K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148: 350-382.‏
Limura K., Ito H., Chino M., Morshite T., and Herata H. 1997. Behaviour of contaminant heavy metal in soil-plant system. Soil Biology and Biochemistry. 31: 820–851.
Mansotra P., Sharma P., and Sharma S. 2015. Bioaugmentation of Mesorhizobium cicer, Pseudomonas spp. and Piriformospora indica for sustainable chickpea production. Physiology and Molecular Biology of Plants, 21(3): 385-393.‏
Meers E., Qadir M., De Caritat P., Tack F.M.G., Du Laing G., and Zia M.H. 2009. EDTA-assisted Pb phytoextraction. Chemosphere, 74(10): 1279-1291.‏
Molazem D., Qurbanov E., and Dunyamaliyev S. 2010. Role of proline, Na and chlorophyll content in salt tolerance of corn (Zea mays L.). American-Eurasian Journal of Agricultural and Environmental Science, 9(3): 319-324.
Mulligan C.N., Yong R.N., and Gibbs B.F. 2001. Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering Geology, 60(1-4): 193-207.
Mulvaney R.L. 1996. Nitrogen-inorganic forms. In: Sparks D.L., (Ed.). Methods of soil Analysis- Part 3. Chemical Methods- SSSA Book Series No. 5. Soil Science Society of American and American Society of Agronomy, Madison, 1123- 1184.
Nanda R., and Agrawal V. 2018. Piriformospora indica, an excellent system for heavy metal sequestration and amelioration of oxidative stress and DNA damage in Cassia angustifolia Vahl under copper stress. Ecotoxicology and Environmental Safety, 156: 409-419.‏
Perner H., Schwarz D., Bruns C., Mäder P., and George E. 2007. Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of Pelargonium plants. Mycorrhiza. 17(5): 469-474.‏
Poschenrieder C., and Coll J.B. 2003. Phytoremediation: principles and perspectives. Contributions to Science, 2: 333-344.‏
Prasad, M.N.V., and De Oliveira Freitas, H.M. 2003. Metal hyperaccumulation in plants—biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology, 6(3): 110-146.
Qiang X., Weiss M., Kogel K.H., and Schäfer P. 2012. Piriformospora indica—a mutualistic basidiomycete with an exceptionally large plant host range. Molecular Plant Pathology, 13(5): 508-518.
Rosa M., Prado C., Podazza G., Interdonato R., González J.A., Hilal M., and Prado F.E. 2009. Soluble sugars: Metabolism, sensing and abiotic stress: A complex network in the life of plants. Plant Signaling and Behavior, 4(5): 388-393.
Sarma M.V.R.K., Kumar V., Saharan K., Srivastava, R., Sharma A.K., Prakash A., and Bisaria V.S. 2011. Application of inorganic carrier‐based formulations of fluorescent pseudomonads and Piriformospora indica on tomato plants and evaluation of their efficacy. Journal of Applied Microbiology, 111(2): 456-466.‏
Sepehri M., and Khatibi B. 2021. Combination of siderophore-producing bacteria and Piriformospora indica provides an efficient approach to improve cadmium tolerance in alfalfa. Microbial Ecology, 81(3): 717-730.‏
Schäfer P., Pfiffi S., Voll L.M., Zajic D., Chandler P.M., Waller F., Scholz U., Pons-Kuhnemann J., Sonnewald S., Sonnewald U., and Kogel K.H. 2009. Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indicaThe Plant Journal, 59(3): 461-474.‏
Shahabivand S., and Aliloo A.A. 2016. Piriformospora indica promotes growth and antioxidant activities of wheat plant under cadmium stress. Yüzüncü Yil Üniversitesi Journal of Agricultural Sciences, 26(3): 333-340.‏
Shahabivand S., Parvaneh A., and Aliloo A.A. 2017. Root endophytic fungus Piriformospora indica affected growth, cadmium partitioning and chlorophyll fluorescence of sunflower under cadmium toxicity. Ecotoxicology and Environmental Safety, 145: 496-502.‏
Shahabivand S., Maivan H.Z., Goltapeh E.M., Sharifi M., and Aliloo A.A. 2012. The effects of root endophyte and arbuscular mycorrhizal fungi on growth and cadmium accumulation in wheat under cadmium toxicity. Plant Physiology and Biochemistry, 60: 53-58.‏
Sherameti, I., Venus, Y., Drzewiecki, C., Tripathi, S., Dan, V.M., Nitz, I. and Oelmüller, R. 2008. PYK10, a β‐glucosidase located in the endoplasmatic reticulum, is crucial for the beneficial interaction between Arabidopsis thaliana and the endophytic fungus Piriformospora indica. The Plant Journal, 54(3): 428-439.‏
Sinha P., Dube B.K., Srivastava P., and Chatterjee C. 2006. Alteration in uptake and translocation of essential nutrients in cabbage by excess lead. Chemosphere, 65(4): 651-656.‏
Singh O.V., Labana S., Pandey G., Budhiraja R., and Jain R.K. 2003. Phytoremediation: an overview of metallic ion decontamination from soil. Applied Microbiology and Biotechnology, 61(5): 405-412.‏
Sirrenberg A., Göbel C., Grond S., Czempinski N., Ratzinger A., Karlovsky P., and Pawlowski K. 2007. Piriformospora indica affects plant growth by auxin production. Physiologia Plantarum, 131(4): 581-589.
Vadassery J., Ritter C., Venus Y., Camehl I., Varma A., Shahollari B., and Oelmüller, R. 2008. The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indicaMolecular Plant-Microbe Interactions, 21(10): 1371-1383.‏
Varma A., Verma S., Sahay N., Bütehorn B., and Franken, P. 1999. Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Applied and Environmental Microbiology, 65(6): 2741-2744.‏
Weryszko‐Chmielewska E., and Chwil M. 2005. Lead-induced histological and ultrastructural changes in the leaves of soybean (Glycine max (L.) Merr.). Soil Science and Plant Nutrition, 51(2): 203-212.‏
Wu M., Wei Q., Xu L., Li H., Oelmüller R., and Zhang W. 2018. Piriformospora indica enhances phosphorus absorption by stimulating acid phosphatase activities and organic acid accumulation in Brassica napus. Plant and Soil, 432(1): 333-344.‏
Xiong Z.T., Zhao F., and Li M.J. 2006. Lead toxicity in Brassica pekinensis Rupr.: effect on nitrate assimilation and growth. Environmental Toxicology, 21(2): 147-153.‏
Yang Y., Liang Y., Han X., Chiu T.Y., Ghosh A., Chen H., and Tang M. 2016. The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil. Scientific Reports, 6(1): 1-14.‏
Ye W., Shen C.H., Lin Y., Chen P.J., Xu X., Oelmüller R., and Lai Z. 2014. Growth promotion-related miRNAs in Oncidium orchid roots colonized by the endophytic fungus Piriformospora indica. PLoS One, 9(1): 84-92.
Zhou J., Zhang Z., Zhang Y., Wei Y., and Jiang, Z. 2018. Effects of lead stress on the growth, physiology, and cellular structure of privet seedlings. PLoS One, 13(3): e0191139.‏