تعیین مجموعه حداقل داد‌ه‌ها برای ارزیابی کیفیت خاک در گندم زارهای منطقه پیرانشهر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مدیریت منابع خاک دانشگاه آزاد تبریز، ایران

2 گروه خاک، دانشکده کشاورزی و منایع طبیعی، دانشگاه آزاد اسلامی واحد تبریز، تبریز، ایران

3 استادیار گروه علوم خاک، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران

4 عضو هیئت علمی دانشگاه ارومیه

5 گروه محیط زیست، واحد تبریز، دانشگاه آزاد اسلامی، تبریز ایران

چکیده

ارزیابی و تعیین مجموعه حداقل داده­ها جهت بررسی کیفیت خاک به لحاظ صرفه­جویی در هزینه و زمان بسیار با اهمیت و ارزشمند است. این تحقیق با اهداف اصلی ارزیابی شاخص کیفیت خاک­های تحت کشت متوالی و دراز مدت گندم توسط یک مدل معتبر (Integrated quality index)، تعیین مجموعه حداقل داده برای ارزیابی کیفیت خاک­های این منطقه و ارزیابی رابطه مابین شاخص کیفیت خاک و اجزای عملکردی گندم در اراضی کشاورزی منطقه پیرانشهر استان اذربایجان­غربی انجام گرفت. 18 ویژگی فیزیکی و شیمیایی و حاصلخیزی در خاک سطحی این اراضی که دارای سه رده خاک مالی سول، اینسپتی سول و ورتی سول می­باشد با بررسی و مطالعه 40 پروفیل اندازه­گیری شد. کل متغیرهای مؤثر بر کیفیت خاک(TDS)  تعیین و حداقل داده مؤثر (MDS) با استفاده از روش تجزیه مؤلفه های اصلی(PCA) مشخص شدند. شاخص کیفیت خاک با استفاده از تکنیک میان یابی، متناسب با رشد گیاه به پنج کلاس تقسیم بندی شد. بر اساس نتایج تجزیه به مولفه های اصلی، پنج ویژگی کربن آلی، رس، نسبت جذب سدیم، کربنات کلسیم معادل و سیلت دارای ارزش ویژه بزرگ‌تر از یک بوده و به­عنوان شاخص‌های MDS انتخاب شدند. بیش­ترین مقدار IQITDS و IQIMDS در خاک رده‌ی اینسپتی‌سول‌ها سپس بترتیب در رده مالی‌سول و ورتی‌سول‌ مشاهده شد. ارتباط معنی‌داری (p< 0.05) مابین اجزای عملکرد گندم (عملکرد دانه و بیولوژیک گندم) با مدل‌های IQITDS و IQIMDS یافته شد که نشان دهنده‌ی تآثیر مثبت و معنی‌دار شاخص کیفیت خاک بر اجزای عملکرد گندم بود. همچنین مدل IQITDS نسبت به مدل IQIMDS به علت ضریب اطمینان (R2) بیشتر از دقت بیشتری برای پیش‌بینی عملکرد اجزای گندم برخوردار بود. با این وجود به علت همبستگی مثبت و معنی دار مابین IQITDS و  IQIMDS(R2 = 0.9)، مدل IQIMDS مدل اقتصادی و بهتری برای ارزیابی کیفیت خاک های این منطقه است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination of Minimum Data Set to Evaluate Soil Quality in Piranshahr Region Wheat Fields

نویسندگان [English]

  • Fatemeh Kafei 1
  • Mohammad Reza Dalalian 2
  • elnaz sabbagh Tazeh 3
  • Salar Rezapour 4
  • O. Rafieyan 5
1 PH.D Student, Management of soil Resources, Tabriz Azad University, Iran
2 Department of Soil, Agriculture and Natural Resources Faculty, Tabriz Branch, Islamic Azad University, Tabriz, Iran
3 Department of Soil Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran
4 Associate Prof. of Soil Science, Department of Soil Science, Urmia University, Urmia, Iran
5 , Department of Environmental Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
چکیده [English]

Evaluating and determining the minimum data set to evaluate soil quality is very important, valuable in terms of cost, and time save. The aims of this study were to assess the quality index of soils under successive, and long-term cultivation of wheat by a valid model (Integrated quality index= IQI), determine the minimum data set to evaluate the quality of soils in this region, and evaluate the relationship between soil quality index and wheat yield components. For these purposes, 18 physical, chemical, and fertility properties of the surface soil belonging to 40 soil profiles were determined in the croplands from Piranshahr region of West Azerbaijan province. The soils were classified in the three order of Mollisols, Inceptisols, and Vertisols. Total variables affecting soil quality (TDS) were determined, and minimum effective data (MDS) were estimated using principal component analysis (PCA). The soil quality index was divided into five classes according to the growth of the plant using the interpolation technique. Based on the results of PCA, five properties of organic carbon, clay, sodium adsorption ratio, calcium carbonate equivalent and silt had a specific value greater than one and were selected as MDS indicators. The highest values of IQITDS, and IQIMDS were observed in the Inceptisols, followed by Mollisols and Vertisols, respectively. A significant relationship (p <0.05) was found between wheat yield components (grain yield, and biological yield of wheat) with IQITDS and IQIMDS models, which showed a positive, and significant effect of soil quality index on wheat yield components. Moreover, the IQITDS model was more accurate than the IQIMDS model in predicting the performance of wheat components due to its higher R2. However, due to the positive, and significant correlation between IQITDS and IQIMDS (R2 =0.9(, the IQIMDS model is an economic and better model for evaluating the quality of soils in the region.

کلیدواژه‌ها [English]

  • Soil Quality Index
  • Total Data Set
  • Minimum Data Set
  • Grain Yield
  • Biological Yield
Andrews S. S., Karlen D. L., and Mitchell J. P. 2002. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agriculture ecosystems and environment, 90(1): 25-45.
Andrews S. S., Karlen D. L., and Cambardella C. A. 2004. The soil management assessment framework: A quantitative soil quality evaluation method.
 Armenise E., Redmile-Gordon M. A., Stellacci A. M., Ciccarese A., and Rubino P. 2013. Developing a soil quality index to compare soil fitness for agricultural use under different managements in the Mediterranean environment. Soil and Tillage Research, 130: 91-98.‏
Aparicio V., and Costa J.L. 2007. Soil quality indicators under continuous cropping systems in the Argentinean pampas. Soil and Tillage Research, 96: 155-165.
Biswas S., Hazra G. C., Purakayastha T. J., Saha N., Mitran T., Roy S. S., ... and Mandal B. 2017.
N., Hartemink A. E., and Brevik E.C.2014. Soil-forming factors and Soil Taxonomy. Geoderma, 226, 231-237.
Blake GR., Hart age KH, 1986. Bulk density. In: Klute, A. (Ed.), Methods of Soil Analysis. Part1:Physical and Mineralogical Methods, 2nd Ed. Agronomy Monograph, 9: 363–382.
Brady N.C. and Weil, R.R., 2016. The nature and properties of soils. Pearson.
Jahany M. and Rezapour S. 2020. Assessment of the quality indices of soils irrigated with treated wastewater in a calcareous semi-arid environment. Ecological Indicators, 109, p.105800.
Brejda JJ., Moorman TB., Karlan DL. And Dao TH. 2000. Identification of regional siol quality factors and indicators: I. Central and Southern High Plains, Soil Science Society of America . 64:2115-2124.
Bremner J.M. and Mulvaney C.S. 1982. Nitrogen-total. p. 595-624. In: A.L. Page et al., (Ed.) Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. ASA and SSSA, Madison, WI.
Danielson R.E. and Sutherland, P.L. 1986. Porosity. Methods of Soil Analysis: Part 1-Physical and Mineralogical Methods, (methodsofsoilan1), 443-461.
De Paz J. M., Sánchez J., and Visconti F. 2006. Combined use of GIS and environmental indicators for assessment of chemical, physical and biological soil degradation in a Spanish Mediterranean region. Journal of environmental management, 79(2): 150-162.‏
Dexter A. R. 2004. Soil Physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma, 120(3-4): 201-214.
Dobermann A., and Oberthür T. 1997. Fuzzy mapping of soil fertility—a case study on irrigated riceland in the Philippines. Geoderma, 77(2-4): 317-339.
Doran J. W. and Parkin T.B. 1996. Quantitative indicators of soil quality: a minimum data set. Soil Science Society of America, 49: 25-37.
Drouineau G. 1942. Dosage rapide du calcaire actif du sol; Nouvelles donnees sur la separation et la nature des fractions calcaires. Ann. Agron, 12, pp.441-450.
Fox G. A., and Metla R. 2005. Soil property analysis using principal components analysis, soil line, and regression models. Soil Science Society of America Journal, 69(6), 1782-1788.
Gee G.W., and Bauder J.M. 1986. Partical-size Analysis. In Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods. Agronomy Monogroph No. 9 (2nd Ed), American Society of Agronomy, Madison, WI. Pp 383-411.
Govaerts B., Sayre K. D., and Deckers J. 2006. A minimum data set for soil quality assessment of wheat and maize cropping in the highlands of Mexico. Soil and tillage research, 87(2), 163-174.‏
Jahany M. and Rezapour S. 2020. Assessment of the quality indices of soils irrigated with treated wastewater in a calcareous semi-arid environment. Ecological Indicators, 109, p.105800.
Havlin J.L., Beaton J.D., Tisdal S.L. and Nelson, W.L. 2005. Soil Fertility and Fertilizers an Introduction to Nutrient Management. 7th Ed. 528 P.
Hazelton P., and Murphy B. 2016. Interpreting soil test results: What do all the numbers mean?. CSIRO publishing.‏
Karkaj E. S., Sepehry A., Barani H., Motamedi J., and Shahbazi F. 2019. Establishing a suitable soil quality index for semi-arid rangeland ecosystems in northwest of Iran. Journal of Soil Science and Plant Nutrition, 19(3), 648-658.‏
‏Karlen D. L., Tomer M. D., Neppel J., and Cambardella C. A. 2008. A preliminary watershed scale soil quality assessment in north central Iowa, USA. Soil and Tillage Research, 99(2), 291-299.‏
MATLAB R2015b. 2015. Software for technical computing and model-based design. The Mach Works Ins, USA.
Mamehpour N Rezapour S, Ghaemian N. 2021. Quantitative assessment of soil quality indices for urban croplands in a calcareous-semiarid ecosystem. Geoderma, 382:114781
Masto R. E., Chhonkar P. K., Singh D., and Patra A. K. 2008. Alternative soil quality indices for evaluating the effect of intensive cropping, fertilisation and manuring for 31 years in the semi-arid soils of India. Environmental monitoring and assessment, 136(1), 419-435.‏
Mohammadi J., Khademi H., and Nael M. 2005. Study the variability of soil quality in selected ecosystems of central Zagros. JWSS-Isfahan University of Technology, 9(3), 105-120.‏
‏Nabiollahi K., Heshmat E., Mosavi A., Kerry R., Zeraatpisheh M., and Taghizadeh-Mehrjardi R. 2020. Assessing the influence of soil quality on rainfed wheat yield. Agriculture, 10(10), 469.
National Research Council. 1993. Soil and water quality: An agenda for agriculture. National Academies Press.‏
Nelson BW and Sommers LE, 1986. Total carbon, organic carbon and organic matter. Pp:539 - 577. In: Page L, Miller RH and Keeney DR (Eds) Methods of Soil Analysis. Part 2. Soil Science Society of America , Madison WI.
‏Olsen SR., and Sommers L. 1982. phosohorus. In: AL. Page: Methods of Soil Analysis, Agron. No. 9 Part2: Chemical and Microbiological Properties, (Ed.) Am. Soc.Agron., Madison, WI, USA.: 403- 430.
Page A.L. Miller R.H., and Keeney D.R. 1982. Methods of Soil Analysis, part2, Chemical and Microbiological Properties. American Society of Agronomy, Inc. Soil Science Society of Aamerica, Madison, WI.
Qi Y., Darilek J. L., Huang B., Zhao Y., Sun W., and Gu Z. 2009.“ Evaluating soil quality indices in an agricultural region of Jiangsu Province,” China. Geoderma, 149(3-4), 325-334.
‏Rezaee L., Moosavi A. A., Davatgar N., and Sepaskhah A. R. 2020. Soil quality indices of paddy soils in Guilan province of northern Iran: Spatial variability and their influential parameters. Ecological Indicators, 117, 106566.‏
Rezapour S., Nouri A., Jalil H. M., Hawkins S. A., and Lukas S. B. 2021. Influence of treated wastewater irrigation on soil nutritional-chemical attributes using soil quality Index. Sustainability, 13(4), 1952.‏
Shukla M. K., Lal R., and Ebinger M. 2006. Determining soil quality indicators by factor analysis. Soil and Tillage Research, 87(2), 194-204.‏
Sparks D.L., Helmke P.A., and Page.A.L.1996. Methods of Soil Analysis: Chemical Methods (No. 631.417/S736 V.3).
Stevenson B. A., McNeill S., and Hewitt A. E. 2015. Characterising soil quality clusters in relation to land use and soil order in New Zealand: An application of the phenoform concept. Geoderma, 239, 135-142.‏
Sun B., Zhou S., and Zhao Q. 2003. Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China. Geoderma, 115(1-2), 85-99.‏
US Salinity Laboratory. Saturated Soil Paste.1954. Diagnosis and Improvement of Saline and Alkali Soils. Agr. Handbook 60 .USDA.
Vasu D., Singh S. K., Ray S. K., Duraisami V. P., Tiwary P., Chandran P., ... and Anantwar S. G. 2016. Soil quality index (SQI) as a tool to evaluate crop productivity in semi-arid Deccan plateau, India. Geoderma, 282, 70-79.‏
Wilding L. P., and Dress L. R. 1983. Application of Geostatistics to Spatial Studies of Soil. Advances in Agronomy. Trangmar, BB RS Yost, and G. Uehara (Ed.), 38.‏
Yeilagi S., Rezapour S., and Asadzadeh F. 2021. Degradation of soil quality by the waste leachate in a Mediterranean semi-arid ecosystem. Scientific reports, 11(1), 1-12.‏‏