تغییرات زمانی و مکانی شوری خاک در بخشی از اراضی طرح زهکشی 280 هزار هکتاری استان گلستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 دانشیار گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

3 دانشیار گروه زراعت،دانشکده تولیدات گیاهی،دانشگاه علوم کشاورزی و منابع طبیعی گرگان

10.30466/asr.2024.121471

چکیده

شوری­زدایی خاک در مزارع زهکشی شده به دلیل تأثیر منفی شوری خاک بر عملکرد محصول اهمیت زیادی دارد. بنابراین پایش شوری خاک به منظور مدیریت بهینه آب و خاک و پایداری اراضی کشاورزی امری ضروری است. از اراضی زهکشی شده 44 نمونه از عمق صفر تا 30 و 30 تا 60 سانتی­متری خاک 5 بار طی یکسال تهیه شد. جهت تهیه نقشه شوری و اسیدیته خاک از روش­های GPI، LPL، IDW، Ok، RBF استفاده شد. برای ارزیابی دقت هر روش­از RMSE  و MAE استفاده شد. نتایج ارزیابی شوری در عمق صفر تا 30 سانتیمتری خاک، درماه اول و سوم کریجینگ Stable در ماه دوم کریجینگ نمایی و در ماه چهارم و پنجم RBF مدل چند ربعی معکوس، بعنوان بهترین مدل انتخاب شدند. نتایج ارزیابی شوری در عمق 30 تا 60 نشان داد که در ماه اول و سوم کریجینگ Stable، درماه دوم کریجینگ گوسی، درماه چهارم کریجینگ نمایی در ماه پنجم RBF مدل چند ربعی معکوس بعنوان بهترین مدل انتخاب شدند. نتایج ارزیابی pH در عمق صفر تا 30 سانتی­متری خاک نشان داد در ماه اول در روش کریجینگ کروی، ماه دوم و پنجم GPI با توان اول، ماه سوم روش IDW با توان دوم و ماه چهارم روش کریجینگ نمایی کمترین خطا را دارند. نتایج ارزیابی pH در عمق 30 تا 60 ساتنی­متری خاک در ماه اول، سوم و چهارم روش کریجینگ Stable و در ماه دوم و پنجم روش GPI با توان اول با کمترین خطا بعنوان بهترین روش انتخاب شدند. نتایج نشان داد که مشکل شوری و قلیایت در غالب نقاط منطقه دیده می­شود و میزان شوری در لایه سطحی خاک بیشتر از لایه عمقی می­باشد. مقایسه نقشه شوری در ماه­های مختلف هم مبین این است شوری در طی 5 ماه پایش سیر نزولی داشته و روند کلی تغییرات pH نیز مانند EC است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Temporal and Spatial Changes of Soil Salinity in a part of the 280-Thousand Hectare Drainage Plan Lands of Golestan Province

نویسندگان [English]

  • fateme valinezhad 1
  • mehdi zakerinia 2
  • hosein kazemi 3
1 PhD Student, Dept. of Water Engineering, Gorgan University of Agricultural Sciences and Natural Resources, 09112546927,
2 Associate Prof., Dept. of Water Engineering , Gorgan University of Agricultural Sciences and Natural Resources
3 Associate Professor, Department of Agriculture, Faculty of Plant Production Gorgan University of Agricultural Sciences and Natural Resources
چکیده [English]

Soil desalination in drained fields is very important because soil salinity harms on crop yield. Therefore, for the optimal management of water and soil, and the sustainability of agricultural lands, salinity monitoring in soil is essential. In this study, 44 soil samples from the depth of 0-30 and 30-60 cm were prepared from drained lands, during one cropping year. Then, soil salinity and acidity map was produced by GPI, LPL, IDW, Ok, RBF methods. Evaluation of salinity at 0-30 cm showed that stable kriging in the first and third months, exponential kriging in the second month, RBF inverse multi-quadrant model in the fourth and fifth months, were the best models. The results 30-60 cm showed that stable kriging in the first and third month, Gaussian kriging in the second month, Exponential kriging in the fourth month, and RBF inverse multi-quadrant model in the fifth month were selected as the best model. Also, evaluation of pH at the depth of 0-30 cm showed that Spherical kriging in the first month, GPI with the first power in the second and fifth months, IDW with the second power in the third month and Exponential kriging in the fourth month had the lowest RMSE. Evaluation of pH at 30- 60 cm showed that stable kriging method in the first, third, and fourth months and GPI with the first power in the second and fifth months had the lowest RMSE. The problem of salinity and alkalinity was observed in most of the surveyed region, and the level of salinity in the surface layer of the soil was higher than in the deep layer. The comparison of the salinity map in different months shows that the salinity has been decreasing during the 5 months of monitoring and the general trend of pH changes is similar to EC.
 

کلیدواژه‌ها [English]

  • soil salinity map
  • soil acidity map
  • interpolation
  • geostatics
  • GIS
Aldabaa A. A. A., Weindorf D. C., Chakraborty S., sharma A.,  Li  B. 2015. Combination of proximal and remote sensing methods for rapid soil salinity quantification. Geoderma, 239-240:34-46. https://doi.org/10.1016/j.geoderma.2014.09.011
Dadkarami A., and Basirat S. 2015 . Geostatistical evaluation of spatial changes of some surface soil characteristics of Arsanjan. Iranian Journal of Water and Soil Research (Water and Soil Sciences), 29(1): 60-69
Daempanah R., Haqniya GH. H., Alizadeh A., and Karimi Karuyeh. 2011. Preparation of surface soil salinity and salinity map with geostatistical remote sensing methods in the south of Meh Velat city. Iranian Journal of Water and Soil (Agricultural Sciences and Industries), 25(3): 508-498
Delbari M., and Jahani S. 2014. Investigating spatial changes of soil salinity and sodium properties in Chat area of Golestan province. . Iranian Journal of Soil Research (Water and Soil Sciences), 28(20): 434-446
Ghorbani Kh. 2012. Geographic weighted regression Geographic weighted regression: a method for drawing rainfall maps of Gilan province. Iranian Journal Water and Soil (Agricultural Sciences and Industries), 26(3) 752-743. (In Persian with English abstract)
HamzeHpour, N., and Bogaert, P. 2017. Spatio-temporal perdiction of soil salinity using soft data a Bayesian maximum Entropy method in western shores of Urmia Lake. Iranian Journal of Applied Soil Research, 6(4): 71-83. (In Persian with English abstract)
Karandish, F. 2015. Analyzing the Geostatistical methods in spatial monitoring of saline and sodic condition of soilunder Treated-Wastewater Irrigation. Iranian Journal of Applied Soil Research, 2(1): 115-128. (In Persian with English abstract)
Kazemi Poshtmasari H., Tahmasebi Sarvestani Z., Kamkar B., shataei Sh., and Sadegh S. 2012. A comparison of interpolation methods of estimating pH and EC in agricultural fields of golestan province (North of Iran). International Journal of agricultural and crop sciences, 4(4): 157-167
Kilic, K., and S. Kilic. 2007. Spatial variability of salinity and alkalinity of a field having salination risk in semi-arid climate in northern Turkey. Environ Monit Assess, 127: 55–65.
Ahmadali Kh., Nik Mehr S., and Liaqat A. 2008. Evaluation of kriging and co-kriging methods in estimating soil salinity and depth acidity (Case study: lands of Bukan region) Iran. Journal of Water Research, 2(3):55-64.
Liu Z.O., Shao M.A., and Wang Y.Q. 2013.  Large-Scale spatial interpolation of soil pH across the loess plateau. China. Environ Earth Sciences, 69:2731-2741.
Mohajer M.P., and Azimbordi. J.F. 1993. Desalinization and desodification curve of saline-sodic soils in Gorgan region. Agricultural Resourse Center of Golestan.
Mohammadi, J. 1998. The study of spatial changes of soil salinity in Ramhormoz region (Khuzestan) using geostatistical theory (kriging). Agricultural Sciences and Techniques, 2(4): 49-63.
Mehdi S.M., Mian S.M., Ghani S., Khalid M., Sheikh A.A., Rasheed s., and Iqbal M.A.J.2013. Modeling of surface soil pH using geostatistical method in Punjab province, pakestan. International jurnal of scientific and engineering research,4(11).
Sahbeni Gh., and Székely B. 2022. Spatial modeling of soil salinity using kriging interpolation techniques( A study case in the Great Hungarian Plain). Eurasian Journal of Soil Science 11(2):102-112.  http://dx.doi.org/10.22616/j.balticsurveying.2019.017
Sheibani, M., Abtahi. S.A. 2021. Study of spatial changes of soil salinity in Karbal plain of Fars
province using geostatistics, 9th international Conference on Agriculture sciences, Enviroment, Urban and Rural development. (In Persian with English abstract)
Snepvangers J., Heuvelink G., and Huisman J. 2003. Soil water content interpolation using Spatio-Temporal Kriging with external drift. Geoderma, 112: 253-271
Soleimani saru, E., Maghsud, F., Damavandi, A.A. 2016. Evaluation of the efficiency of interpolation methods for estimating pH and soil salinity in Dorodzan section of Fars province. Iranian remote sensing & GIS. 8( 3):77-90
Zendi S., Ghobakhlou A., and Salis PH. 2011. A comparison of spatial interpolation methods for mapping soil pH by depth.Geo-informatics researchcenter. Auckland university of technology New Zealand.