پایش تغییرات مکانی-زمانی شوری با استفاده از سنجش از دور (مطالعه موردی: رودشت، اصفهان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 فوق دکتری، گروه آگرواکولوژی، دانشکده مهندسی و فناوری کشاورزی، دانشگاه آرهوس

2 پژوهشگر، گروه علوم و مهندسی آب و خاک، پژوهشکده کشاورزی هسته ای، پژوهشگاه علوم و فنون هسته ای

3 استاد، گروه علوم و مهندسی خاک، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران

4 دانشجوی دکتری، گروه علوم و مهندسی خاک، دانشکده مهندسی و فناوری کشاورزی، دانشگاه صنعتی اصفهان

10.30466/asr.2024.121527

چکیده

تکنیک سنجش از دور ابزاری موثر و قابل اعتماد در مدیریت و پایش شوری خاک است. اراضی شور را می­توان با استفاده از تکنیک­های سنجش از دور در مناطق مختلف ارزیابی، نقشه­برداری و پایش کرد. این مطالعه با هدف بررسی تغییرات شوری خاک و ارتباط آن با آب خاک و همچنین وضعیت پوشش گیاهی با استفاده از شاخص‌های نسبت طیفی تکنیک سنجش از دور در سال‌های مختلف در منطقه رودشت اصفهان انجام شد. برای دستیابی به این هدف، از سری­های LANDSAT چند طیفی سال­های 1994، 1998، 2014 و 2017 استفاده شد و سه شاخص نسبت طیفی شامل شاخص تفاضل پوشش گیاهی نرمال شده (NDVI)، شاخص تفاضل شوری نرمال شده (NDSI) و شاخص تفاضل رطوبت نرمال شده (NDWI) محاسبه شد. همچنین 100 نمونه خاک از عمق 0-30 سانتی­متر با توزیع فضایی مناسب از منطقه رودشت برای اندازه­گیری هدایت الکتریکی (EC) به منظور تطبیق داده­های زمین و نتایج شاخص­های نسبت طیفی جمع­آوری شدند. نتایج حاکی از آن است که طی 23 سال، شوری خاک افزایش یافته و بخش زیادی از منطقه مورد مطالعه با پوشش گیاهی متراکم به پوشش گیاهی کم تراکم و اراضی شور تبدیل شده است. با توجه به نتایج، تخصیص آب شیرین با EC پایین به کشاورزان در نیمه دوم سال می­تواند راه حل مناسبی برای مقابله با مشکلات شوری باشد. همچنین یافته­ها نشان می­دهد که منطقه رودشت در معرض شوری شدید قرار دارد و در صورت عدم مدیریت صحیح، خطر تبدیل اراضی کشاورزی به اراضی شور غیرقابل کشت وجود دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluating the Spatiotemporal Variations of Soil Salinity Using Remote Sensing Technique (Case Study: Rudasht, Isfahan)

نویسندگان [English]

  • Leila Jahanbazi 1
  • Rayehe Mirkhani 2
  • Ahmad Heidari 3
  • Mohammad Sajad Ghavami 4
1 Pos Doc, Department of Agroecology, Aarhus University, Denmark
2 Researcher, Nuclear Agriculture School, Nuclear Science and Technology Research Institute (NSTRI)
3 Professor, Department of Soil Science and Engineering, Faculty of Agricultural Engineering & Technology, University of Tehran
4 Ph.D. Student., Department of Soil Science and Engineering, Faculty of Agricultural Engineering & Technology, Isfahan University of Technology (IUT)
چکیده [English]

Remote sensing technique is an effective and reliable tool in management and monitoring soil salinity. Saline lands can be assessed, mapped, and monitored in different regions using remote sensing techniques. This study was conducted in the Rudasht Region of Isfahan with the aim of investigating changes in soil salinity and its relationship with soil water, as well as the state of vegetation using spectral ratio indices of remote sensing techniques in different years. To achieve this goal, multispectral LANDSAT series of 1994, 1998, 2014, and 2017 were used and three spectral ratio indices were calculated, including Normalized Difference Vegetation Index (NDVI), Normalized Difference Salinity Index (NDSI), and Normalized Difference Water Index (NDWI). Also, 100 soil samples were taken from a depth of 0-30 cm with appropriate spatial distribution from the Rudasht region to measure the electrical conductivity (EC) to match the ground data and the results of the spectral ratio indices. The results indicate that during these 23 years, salinity has increased and a large part of the studied area with dense vegetation has turned into low density vegetation and saline lands. According to the results, allocating fresh water with low EC to farmers in the second half of the year may be a good solution to deal with salinity problems. Also, the findings show that the Rudasht region is exposed to severe salinity and if not properly managed, there is a risk of turning agricultural lands into uncultivable saline lands.

کلیدواژه‌ها [English]

  • Rudasht region
  • NDVI
  • NDWI
  • NDSI
Abbas A., Khan S., Hussain N., Hanjra M.A., and Akbar S. 2013. Characterizing soil salinity in irrigated agriculture using a remote sensing approach. Phys. Chem. Earth Part A, pp. 43-52.
Afsharinia H., and Panahi F. 2021. Effect of climatic drought on surface soil salinity in Kashan plain. Water and soil and modeling, 1(2): 40-52.
Ahmadi Z., Abbasi A., Shahabi M., and Boali A. 2021. Comparison of decision tree and neural network methods in predicting soil salinity in the west of lake Urmia. Degradation and Rehabilitation of Natural Land, 1(1): 82-91 (In Persian)
Al-Khaier F. 2003. Soil salinity detection using satellite remote sensing, ITC MSc. Thesis, Supervisor: Bastiaanssen, ITC, Netherlands.
Allbed A., Kumar L., and Sinha P. 2014. Mapping and modeling spatial variation in soil salinity in the Al Hassa Oasis based on remote sensing indicators and regression techniques. Remote Sensing, 6: 1137-1157.
Asfaw E., Suryabhagavan K.V., and Argaw. M. 2018. Soil salinity modeling and mapping using remote sensing and GIS: the case of Wonji sugar cane irrigation farm, Ethiopia. Journal of the Saudi Society of Agricultural Sciences, 17 (3): 250-258.
Bannari A., and Al-Ali Z.M. 2020. Assessing climate change impact on soil salinity dynamics between 1987–2017 in arid landscape using landsat TM, ETM+ and OLI data. Remote Sensing, 12: 2794-2810.
Elhag M. 2016. Evaluation of different soil salinity mapping using remote sensing techniques in arid ecosystems, Saudi Arabia, Sensors, Article ID 7596175: 1-8.
Gao B. 1996. NDWI -A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58: 257-266.
Hamzehpour N., and Bogaer V. 2019. Spatio-temporal prediction of soil salinity using soft data and bayesian maximum entropy method in western shores of Urmia Lake. Applied Soil Research, 6 (4):71-83 (In Persian)
Heim R.R. 2002. A review of twentieth-century. Drought indices used in united states. Bulletin of the American Meteorological Society, 84:1149-1165.
Huete A.R., Jackson R.D., and Post D.F. 1985. Spectral response of a plant canopy with different soil backgrounds. Remote Sensing Environment, 17: 37-53.
Hunt G.R., Salisbury J.W., and Lenhoff C.J. 1972. Visible and near infrared spectra of minerals and rocks: V. Halides, Phosphates, Arsenates, Venadates and Borates. Modern Geology, 3:121-32.
Jahanbazi L., and Sarmadian F. 2016. Proximal soil sensing, A new technique in soil science studies. 15th Iran Soil Science Congress, Isfahan, Iran. (In Persian)
Jahanbazi L., Mirkhani R., and Qavami M.S. 2018. Possibility of salinity changes detect by using remote sensing data. 16th Iran Soil Science Congress, Zanjan, Iran. (In Persian)
Jahanbazi L., Heidari A., Mohammadi M.H., and Kuniushkova M. 2023. Salt accumulation in soils under furrow and drip irrigation using modified waters in central Iran. Eurasian Journal of Soil Science, 12 (1), 63-78.
Jiao W., Tian C., Chang Q., Novick K.A. and Wang L. 2019.  A new multi-sensor integrated index for drought monitoring, Agricultural and forest meteorology, 268, pp. 74-85.
Khaleghi R., Bahmanesh J., and Azad N. 2018. Prediction of soil salinity by multivariate regression method based on indicators extracted from Landsat 8 images (case study: Urmia). Applied Soil Research, 7 (1), 108-121. (In Persian)
Korolyuk T.V. 2015. Soil forming factors: Their role in the formation of saline soils on the plains of western and central Ciscaucasia. Eurasian Soil Science, 48 (7), 689-700.
Lhissou R., El Harti A., and Chokmani K. 2014. Mapping soil salinity in irrigated land using optical remote sensing data. Eurasian Journal of Soil Science, 3: 82-88.
Liu W.T., and Kogan F.N. 1996. Monitoring regional drought using the vegetation condition index, International Journal of Remote Sensing, 17 (14), pp. 2761-2782.
Meimei Z., and Ping W. 2011. Using HJ-I satellite remote sensing data to surveying the saline soil distribution in Yinchuan plain of China. African Journal of Agricultural Research, 6 (32), 6592-6597.
Metternicht G., and Zinck J.A. 2003. Remote sensing of soil salinity: Potentials and constraints. Remote Sensing of Environment, 85: 1-20.
Mombeni M., Arkhi S., and Arami S.A. 2014. Changes in salinity trend using remote sensing and GIS (Case Study: South of Khuzestan). Desert Ecosystem Engineering, 6: 27-34. (In Persian)
Momipour M. 2018. Spatio-temporal analysis of soil salinity with satellite imagery in the period of 24 years in Abadan province. Geography and environmental sustainability, 27: 47-58. (In Persian)
Nazarnejad H., Komaki C.B., and Servati M. 2021. Mapping soil salinity changes in Miandoab plain using satellite images. Journal of Destruction and Restoration of Natural Lands, Volume: 2 (3): 112-122. (In Persian)
Saha S.K. 2011. Mirovawe remote sensing in soil quality assessment, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-8/W20, 34-39.
Scudiero E., Corwin D.L., and Skaggs T.H. 2015. Regional-scale soil salinity assessment using landsat ETM+ canopy reflectance. Remote Sensing of Environment, 169: 335-343.
Shahid S.A., Zaman M., and Heng L. 2018. Soil salinity: historical perspectives and a world overview of the problem. pp. 43-53, In: Guideline for salinity assessment, mitigationand adaptation using nuclear and related techniques, Springer.
Singh G., Bundela D.S., Sethi M., Lal K., and Kamra S.K. 2010. Remote sensing and geographic information system for appraisal of salt-affected soils in India. Environmental Quality, 39 (1): 5-15.
Spadoni G.L., Cavalli A., Congedo L., and Munafò M. 2020. Analysis of normalized difference vegetation index (NDVI) multi-temporal series for the production of forest cartography, Remote Sensing Applications: Society and Environment, 20, p. 100419.
Wan Z., Wang P., and Li X. 2004. Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the southern Great plains, USA, International Journal of Remote Sensing, 25 (1), pp. 61-72.
Xie F., and Fan H. 2021, Deriving drought indices from Modis vegetation indices (NDVI/EVI) and land surface temperature (Lst): Is data reconstruction necessary, International Journal of Applied Earth Observation and Geoinformation, 101, p. 102352.
Zeinali M., Jafarzadeh A.A., Shahbazi F., Oustan S., and Valizadeh Kamran K. 2016. Evaluating surface soil salinity by pixel-based method based on TM sensor data (Case study: Eastern lands of Khoy). Geographic Information, 25 (99): 127-139. (In Persian).
Zheng W., Zhang D., Fang Y., Wu J., and Huang J. 2018. Comparison of partial least square regression, support vector machine, and deep-learning techniques for estimating soil salinity from hyperspectral data, Journal of Applied Remote Sensing, 12 (2), p. 022204.