کاربرد متغیرهای محیطی و تکنیک نقشه‌برداری رقومی خاک در پیش‌بینی شاخص سله ‌بستن خاک‌های استان آذربایجان‌شرقی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیئت علمی گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه تبریز

2 استاد گروه علوم و مهندسی خاک دانشکده کشاورزی دانشگاه تبریز

3 دانشیار گروه مرتع و آبخیزداری دانشکده منابع طبیعی دانشگاه ارومیه

4 دانشجوی دکتری گروه علوم و مهندسی خاک دانشکده کشاورزی دانشگاه تبریز

5 دانش آموخته کارشناسی‌ارشد گروه علوم و مهندسی خاک دانشکده کشاورزی دانشگاه تبریز

10.30466/asr.2024.121530

چکیده

تشکیل سله یکی از نمودهای تخریب خاک است که موجب افت کیفیت اراضی می­شود. رفع چالش­های ناشی از سله بستن خاک مستلزم شناسایی عرصه‌های تخریب یافته و بهبود مدیریت منابع خاک است. با توجه به اینکه ویژگی­های خاک دارای پیوستگی مکانی هستند، لذا تهیه نقشه­های رقومی به کمک متغیرهای محیطی می‌تواند اقدام مؤثری در مطالعات پراکنش مکانی باشد. بدین­ منظور، تعداد 107 نمونه به­طور تصادفی از سطح استان آذربایجان ‌شرقی تهیه و شاخص سله‌بندی بر اساس روش فائو محاسبه شد. به‌منظور پیش­بینی شاخص سله‌بندی خاک برای محدوده مورد مطالعه، دو مدل‌ جنگل تصادفی و رگرسیون خطی چندگانه در محیط برنامه­نویسی R و با کاربرد دو گروه از متغییرهای محیطی مشتمل بر مشتقات مدل رقومی ارتفاع (18 شاخص) و شاخص­های دورسنجی (8 شاخص) مورد ارزیابی قرار گرفت و در نهایت نقشه­های رقومی با استفاده از مدل برتر تهیه گردید. نتایج نشان داد شاخص سله‌بندی خاک‌های منطقه مورد مطالعه از 07/0 تا 25/2 متغیر می­باشد. همچنین مدل جنگل تصادفی با استفاده از داده‌های مشتقات مدل رقومی ارتفاع و مدل رگرسیون خطی چندگانه با کاربرد شاخص‌های دورسنجی به‌عنوان مدل­های برتر در پیش‌بینی شاخص سله بستن خاک شناسایی شدند. بنابراین می­توان نتیجه گرفت که انتخاب مدل برتر بستگی به نوع متغیرهای محیطی و داده­هایی دارد که در مدل استفاده قرار می‌شوند. علیرغم وجود تفاوت­های جزئی در مقادیر پیکسل­های هر دو نقشه مستخرج از مدل­های برتر معرفی شده، نقشه­های نهایی دارای روند تقریباً یکسانی هستند. نتایج نشان داد که حداکثر مقدار شاخص سله­بندی در قسمت­های غربی و مرکز استان، سپس جنوب­شرقی و شمال­شرقی استان می­باشد. نقشه­های رقومی تهیه شده نشان می­دهد که شاخص مذکور در اراضی جنگلی و مرتعی دارای حداقل مقدار بوده و اراضی زراعی و متفرقه در رتبه‌های بعدی جای داشتند که با مشاهدات میدانی نیز همخوانی دارد. این تحقیق اهمیت تکنیک نقشه­برداری رقومی خاک در مدیریت منابع خاک را بیش از پیش نمایان می­سازد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Using Environmental Covariates and Soil Digital Mapping Technique in Predicting Soil Crusting Index of East Azerbaijan Province

نویسندگان [English]

  • Hossein Rezaei 1
  • Aliasghar Jafarzadeh 2
  • Esmaeil Sheidai-Karkaj 3
  • Behzad Mohammadhosseini sagayesh 4
  • Farshid Pashaeizadeh 4
  • Saba Hasani 5
  • Farzin Shahbazi 2
1 Department of Soil Science and Engineering, Faculty of Agriculture, University of Tabriz, Tabriz- Iran
2 Professor, Soil Science and Engineering Department, Faculty of Agriculture, University of Tabriz- Iran.
3 Associated Professor, Department of Range and Watershed Management, Faculty of Natural Resources, Urmia University
4 Ph.D Student, Department of Soil Science and Engineering, Faculty of Agriculture, University of Tabriz, Tabriz
5 M.Sc. Graduate, Department of Soil Science and Engineering, Faculty of Agriculture, University of Tabriz, Tabriz
چکیده [English]

Soil crusting is one of the degradation features which causes to decrease the land quality. To fix the crises due to soil crusting, it is therefore needed to identify the degraded areas and improve soil resource management. Since the soil properties have a spatial continuity, providing the digital maps using environmental covariates could be an interesting issue to study the spatial distribution. For this, a total of 107 soil samples were randomly taken over the East Azerbaijan Province, subsequently soil crusting index was calculated based on FAO method. To predict the soil crusting index across the study area, two models i.e., random forests (RF) and multiple linear regression (MLR) within the R programming environment using the data derived from digital elevation model (DEM) (18 indices) as well as remote sensing (eight indices) were evaluated. Results showed that the calculated soil crusting index for the entire study area varied from 0.07 to 2.25. Based on the results, RF was superior to MLR when using DEM-derived data, while MLR was distinguished as a parsimonious model when using RS data. It is concluded that selection of the best-fit model mainly depends on the available soil and covariates data used in modelling. Despite somewhat differences in pixel values between provided maps by the relevant models, the final maps demonstrated a similar trend. Generally, based on the results, the highest soil crusting index was found for west and central part of province, followed by south-eastern and north-eastern areas. The provided maps show that the forest and pasture areas have low value of crusting index, while the cultivated and miscellaneous lands were in the following orders which was consistent with field observations. This research further supports the importance of the digital soil mapping (DSM) technique in soil resources management.

کلیدواژه‌ها [English]

  • Crusting index
  • Digital Soil Mapping
  • Modeling
  • Multiple Liner Regression
  • Random Forest
Alavipanah S.K., Damavandi A.A., Mirzaei S., Rezaei A.A., Hamzeh S., Matinfar H.R., Teimouri H., and Javadzarrin I. 2016. Remote sensing application in evaluation of soil characteristics in desert areas. Natural Environment Change, 2 (1): 1-24. (In Persian)
Alvyar Z., Shahbazi F., Oustan S.H., Dengiz O and Minasny B. 2021. Digital mapping of potentially toxic elements enrichment in soils of Urmia Lake due to water level decline. Elsevier, Science of the Total Environment, 808: 1-12.
Anderson T.W., and Darling D.A. 1952. Asymptotic theory of certain goodness of fit criteria based on stochastic processes. Annals of Mathematical Statistics, 23: 193-212.
Awadhwal N.K., and Thierstein G.E. 1985. Soil crust and its impact on crop establishment: A review. Soil and Tillage Research, 5 (3): 289-302.
Badorreck A., Gerke H.H., and Huttl R.F. 2013. Morphology of physical soil crusts and infiltration patterns in an artificial catchment. Soil and Tillage Research, 129: 1-8.
Bagheri Bodaghabadi M., Salehi M.H., Martínez-Casasnovas J.A., Mohammadi J., Toomanian N., and Esfandiarpoor Borujeni I. 2011. Using Canonical Correspondence Analysis (CCA) to identify the most important DEM attributes for digital soil mapping applications. Catena, 86:66-74.
Bajracharya R.M., and Lal R. 1999. Land use effects on soil crusting and hydraulic response of surface crusts on a tropical Alfisol. Hydrological Processes, 13 (1): 59- 72.
Barshad I. 1957. Factors Affecting Clay Formation. Designing Environments, 6: 110- 132.
Breiman L. 2001. Randomforests. Machin Learning, 45: 5–32.
Brungard C.W., Boettinger J.L., Duniway M.C., Wills S.A., and Edwards T.C. 2015. Machine learning for predicting soil classes in three semi-arid landscapes. Geoderma, 239-240: 68-83.
Chamizo S., Stevens A., Cantón Y., Miralles I., Domingo F., and Van Wesemael B. 2011. Discriminating soil crust type, development stage and degree of disturbance in semiarid environments from their spectral characteristics. European Journal of Soil Science, 63 (1): 42- 53.
Chen S., Zhang G., Zhu P., Wang C.H., and Wan Y. 2022. Impact of slope position on soil erodibility indicators in rolling hill regions of northeast China. Catena, 217.
Crucil1 G., and  Van Oost K. 2021. Towards Mapping of Soil Crust Using Multispectral Imaging. Sensors (Basel), 21 (1850):1-20.
Darvishzadeh A. 2003. Geology of Iran. Amirkabir Publication, Tehran, p: 902. (In Persian)
Day R.P. 1965. Pipette method of particle size analysis. In: Methods of Soil Analysis. Agronomy 9, ASA, USA, pp: 553-562.
FAO 1979. A provisional methodology for soil degradation assessment. Food and Agricultural organization of the United Nation, Rome, pp: 47.
Ferrenberg S., Tucker C.L., and Reed S.C. 2017. Biological soil crusts: diminutive communities of potential global importance. Frontiers in Ecology and the Environmental, 15 (3): 160- 167.
Fryrear D.W., Bilbro J.D., Saleh A., Schomberg H., Stout J.E., and Zobeck T.M. 2000. RWEQ: Improved wind erosion technology. Journal of Soil and Water Conservation, 55 (2): 183- 189.
Gallardo-Carrera A., Leonard J., Duval Y., and Durr C. 2007. Effects of seedbed structure and water content at sowing on the development of soil surface crusting under rainfall. Soil and Tillage Research, 95: 207–217.
Gebremariama M., and Kebede F. 2010. Land Use Change Effect on Soil Carbon Stock, Above Ground Biomass, Aggregate Stability and Soil Crust: A Case from Tahtay Adyabo, North Western Tigray, Northern Ethiopia. Journal of the Drylands, 3 (2): 220- 225.
Ghani A.N.C., Taib A.M., and Hasbollah D.Z.A. 2020. Effect of Rainfall Pattern on Slope Stability.  Geotechnics for Sustainable Infrastructure Development, 62: 887- 892.
Gray J., Karunaratne S., Bishop T., Wilson B., and Veeragathipillai M. 2019. Driving factors of soil organic carbon fractions over New South Wales, Australia. Geoderma, 353: 213-226.
Hardie M., and Almajmaie A. 2019. Measuring and estimating the hydrological properties of a soil crust. Journal of Hydrology, 574: 12- 22.
Hare F.K. 1977. Connections between Climate and Desertification. Environmental Conservation, 4 (2): 81-90.
Heuvelink G.B.M., Schoorl M., Veldkamp A., and Pennock D.J. 2006. Space-time Kalman filtering of soil redistribution. Geoderma, 133: 124-137.
Islamic Republic of Iran Meteorological Organization (IRIMO). 2020. Statistics and information and climate data for 20 years (2001-2021). (In Persian)
Janeau J.L., Bricquet J.P., Planchon O., and Valentin C. 2003. Soil crusting and infiltration on steep slopes in northern Thailand. European Journal of Soil Science, 54: 543-553.
Jenny H. 2011. Factors of Soil Formation: A System of Quantitative Pedology. Environmental Science.
Kassas M. 1995. Desertification: a general review. Journal of Arid Environments, 30 (2): 115- 128.
Lado M., Paz A., and  Ben-Hur M. 2004. Organic Matter and Aggregate Size Interactions in Infiltration, Seal Formation, and Soil Loss. Soil Science Society of America Journal, 68 (3): 935- 942.
Lagacherie P.h., McBratney A.B., and Voltz M. 2006. Digital Soil Mapping: An Introductory Perspective. Elsevier, Amsterdam, 31: 3-22. 
Lagacherie P.h. 2008. Digital Soil Mapping: a state of the art. Digital soil mapping with limited data. Springer-Verlag, pp: 181.
Lal R., and Shukla M.K. 2005. Principles of Soil Physics. European Journal of soil Science, 56: 681- 687.
Lema B., Mesfin S., Kebede F., Abraha Z., Fitiwy I., and Haileselassie H.  2019. Evaluation of soil physical properties of long-used cultivated lands as a deriving indicator of soil degradation, north Ethiopia. Physical Geography, 40(4): 1–16.  
Lin L.I. 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45: 255-268.
Lujan L. D. 2003. Soil Properties Affecting Soil Erosion in Tropical Soils. Lecture at the College of Soil Physics, Trieste, Italy, pp: 233- 243.
Manly B.F.G. 2016. Multivariate Statistical Methods. A Primer. Fourth Edition. Chapman and Hall.
McBratney A.B., Mendoça Santos, M.L., and Minasny, B. 2003. On digital soil mapping. Geoderma, 117: 3-52.
Mills A.J., and Fey M.V. 2004. Declining soil quality in South Africa: effects of land use on soil organic matter and surface crusting. South African Journal of Plant and Soil, 21 (5): 388- 398.
Mills A.J., and Fey M.V. 2006. Effects of vegetation cover on the tendency of soil to crust in South Africa. Soil Use and Management, 20 (3): 308- 317.
Moore D.D., and Singer M.J. 1990. Crust Formation Effects on Soil Erosion Processes. Soil Science Society of America Journal, 54 (4): 1117- 1123.
Mousavi A., Shahbazi F., Oustan S., Jafarzadeh A.A., and Minasny B. 2020. Spatial distribution of iron forms and features in the dried lake bed of Urmia Lake of Iran. Geoderma Regional, 21.
Mousavi S.R.O., Sarmadian F., Omid M., and Bogaert P. 2022. Three-dimensional mapping of soil organic carbon using soil and environmental covariates in an arid and semi-arid region of Iran. Measurement, 201.
Nelson D.W., and Sommers L.E. 1996. Total carbon, organic carbon, and organic matter. In: Sparks D.L. (Ed.), Methods of Soil Analysis. Chemical Methods. Part 3. ASA, CSSA, and SSSA, Madison, pp: 961-1010.
Nsabimana G., Hong L., Yuhai B., Nambajimana J.D., Jinlin L., Ntacyabukura T., and Xiubin H. 2023. Soil aggregate disintegration effects on soil erodibility in the water level fluctuation zone of the Three Gorges Reservoir, China. Environmental Research, 217.
Omrani M., Shahbazi F., Feizizadeh B., Oustan S.H and Najafi N. 2021. Application of remote sensing indices to digital soil salt composition and ionic strength mapping in the east shore of Urmia Lake, Iran. Remote Sensing Applications: Society and Environment, 22: 1-11.
Pagliai M. 2010. College on Soil Physics: Soil Physical Properties and Processes under Climate Change. International Centre for Theoretical Physics, Firenze.
Peters J., de Baets B.D., Verhoest N., Samson R., Degroeve S., de Becker P., and Huybrechts W. 2007. Random forests as a tool for Ecohydrological distribution modelling. Ecological Modeling, 207(2-4): 304-318.
Reddy N.N., Chakraborty P., Roy S., Singh K., Minasny B., McBratney A.B., Biswas A., and Das B.S. 2021. Legacy data-based national-scale digital mapping of key soil properties in India. Geoderma, 381, e114684.
Rezaei H., Jafarzadeh A.A., Alijanpour A., Shahbazi F., and Valizadeh Kamran K.H. 2017. Genetically Evolution of Arasbaran Forests Soils along Altitudinal Transects of Kaleybar Chai Sofla Sub-Basin. Water and Soil Science, 26 (1/4): 151- 166. (In Persian).
Ribolzi O., Patin J., Bresson L.M., Latsachack K.O., Mouche E., Sengtaheuanghoung O., Silvera N., Thiébaux J.P., and Valentin C. 2011. Impact of slope gradient on soil surface features and infiltration on steep slopes in northern Laos. Geomorphology, 127 (1-2): 53- 63.
Shahbazi F., McBratney A.B., Malone B.P., Oustan S., and Minasny B. 2019. Retrospective monitoring of the spatial variability of crystalline iron in soils of the east shore of Urmia Lake, Iran using remotely sensed data and digital maps. Geoderma, 337: 1196-1207.
Shaker Shahmarbeigloo P., Khodaverdiloo H., and Momtaz H.R. 2019. Testing of new inputs to predict near-saturated soil hydraulic conductivity. Applied Soil Research, 7(1): 54-69. (In Persian).
Sivakumar M.V.K. 2007. Interactions between climate and desertification. Agricultural and Forest Meteorology, 142 (2-4): 143- 155.
Skidmore E.L., and Powers D.H. 1982. Dry-soil aggregate stability: energy-based index. Soil Science Society of America Journal, 46:1274-1279.
Stavi I., Thevs N., and Priori S. 2021. Soil Salinity and Sodicity in Drylands: A Review of Causes, Effects, Monitoring, and Restoration Measures. Front Environmental Science, 9.
Valentin C., and Bresson L.M. 1998. Soil Crusting. Methods for Assessment of Soil Degradation, pp: 89- 107.
Valentin C., and Janeau J.L. 1989. Les risques de dégradation structurale de la surface des sols en savane humide. Cahiers ORSTOM, série Pédologie, 25:41-52.
Wang B., Waters C., Orgill S., Gray J., Cowie A., Clark A., and Li Liu D. 2018. High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia. Science of the Total Environment, 630, 367-378. 
Witten I.H., Frank E., and Hall M.A. 2011. Data mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington.
Zhang G.H., and Xie Z.F. 2019. Soil surface roughness decay under different topographic conditions. Soil and Tillage Research, 187: 92- 101.
Zhang Y., Zhang G., Pan J., Fan Z., Chen F., and Liu Y. 2019. Soil organic carbon distribution in relation to terrain & land use—a case study in a small watershed of Danjiangkou reservoir area, China. Global Ecology and Conservation, 20, e00731.
Zhu X.,  Liang Y., Qu L., Cao L.,  Tian Z.H.,  Gu Z.H.,  Guo H., and  Li M. 2022. Quantification of physical soil crust thickness and its effects on runoff and sediment yield. Soil Science Society of America Journal, 86 (3): 630- 642.