تعیین واحدهای مدیریت حاصل‎خیزی خاک برای تولید گندم با استفاده از روش‎های زمین‎آمار، آنالیز مؤلفه‎های اصلی و خوشه‎بندی فازی در زیرحوزه هنام (استان لرستان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی، موسسه تحقیقات خاک و اب، سازمان تحقیقات، آموزش و ترویج کشاورزی

2 استادیار، موسسه تحقیقات خاک و اب، سازمان تحقیقات، اموزش و ترویج کشاورزی

3 دانشیار ، موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی

4 دانشیار، موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی

5 استادیار، موسسه تحقیقات خاک و آب- سازمان تحقیقات ، اموزش و ترویج کشاورزی

6 پژوهشگر

چکیده

شناخت وضعیت حاصل‎خیزی خاک، امکان شناسایی مناطقی با مشکل کمبود یا سمیت عناصرغذایی خاک را فراهم نموده و در انتخاب واحدهای همگن مدیریتی مؤثر است. این پژوهش سعی دارد که نواحی مدیریت حاصل‎خیزی خاک در زیرحوزه هنام (استان لرستان) را تعیین کند. تعداد 164 نمونه خاک سطحی (30-0 سانتی‎متر) از مزارع واقع در زیرحوزه هنام استان لرستان با مساحت حدود 14000 هکتار جمع­آوری و ویژگی‎های فیزیکی و شیمیایی خاک اندازه‎گیری شد. پس از تجزیه آماری، توزیع مکانی هر ویژگی مشخص و با کمک روش تحلیل مؤلفه‎های اصلی، ویژگی‎های مهم خاک که بیشترین تأثیر را در حاصل‎خیزی خاک داشتند استخراج شدند. در نهایت با استفاده از روش خوشه‎بندی فازی نواحی مدیریت حاصل‎خیزی خاک تعیین شدند. دو ناحیه مدیریت حاصل‎خیزی در منطقه تفکیک شد که مقادیر کربنات‎ها، پتاسیم، آهن، منگنز و روی در آن‎ها با هم تفاوت معناداری داشتند. غلظت روی در ناحیه یک در محدوده متوسط و در ناحیه دو در محدوده کم قرار داشت. منگنز قابل استفاده خاک در ناحیه دو، کمتر از حد بهینه بود. کربن آلی خاک در هر دو ناحیه، با مقدار بهینه فاصله زیادی داشت که توان تولید خاک‎ها را محدود می‎کند. لذا با توجه به بافت متوسط تا ریز خاک‎های منطقه، اهمیت افزایش کربن آلی برای بهبود حاصل‎خیزی خاک‎ها بیشتر نمایان می‎شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination of Soil Fertility Management Zones in Honam Sub-Basin for Wheat Production Using Geostatistical Methods, Principal Component Analysis & Fuzzy Clustering (Lorestan Province)

نویسندگان [English]

  • hamed rezaei 1
  • farhad moshiri 2
  • mohammadreza balali 3
  • kambiz bazargan 4
  • leila esmaeelnejad 5
  • sina mallah 6
1 associate professor, soil and water research institute, agricultural research, education and development organization
2 assistant professor of soil and water research institute, Agricultural Research, Education and Extension Organization (AREEO)
3 associate professor of soil and water research institute, Agricultural Research, Education and Extension Organization (AREEO)
4 associate professor of soil and water research institute, Agricultural Research, Education and Extension Organization (AREEO)
5 assistant professor of soil and water research institute, Agricultural Research, Education and Extension Organization (AREEO)
6 موسسه تحقیقات خاک و اب
چکیده [English]

Recognition of soil fertility status, it is possible to identify areas with the problem of deficiency or toxicity of soil nutrients & is effective in selecting homogeneous management units. This study tries to determine the soil fertility management zones in the Honam sub-basin. 164 surface soil samples were selected & soil physical & chemical properties were measured. After statistical analysis, the spatial distribution of each property was investigated via geostatistical techniques. Using the principal component test, important soil properties that have the greatest impact on soil fertility were extracted & finally, soil fertility management zones were determined using Fuzz method. Two fertility management zones were identified in the region that the rates of TNV, available K, Fe, Mg, & Zn were significantly different in these two zones. The concentration of Zn in zone one & two is in the medium & low, respectively. Available Mn in zone two was low & it is necessary to fertilize it. Soil organic carbon in both areas is far from its optimum amount, which limits soil production capacity. Due to the medium to heavy texture of the soils of the region, the importance of increasing OC to improve soil fertility becomes more apparent.

کلیدواژه‌ها [English]

  • optimum limit
  • nutrition elements
  • organic carbon
  • Precision agriculture
Ayoubi Sh., Khormali F. 2008. Spatial variability of nutrients available in topsoil using principal component analysis & geostatistical technique (Case study in Apipoli region, &hra Pradesh, India). Agricultural Science & Technology & Natural Resources, 12 (46): 609-620
Bartlett M. S. 1954. A note on the multiplying factors for various Chi-square approximations. Journal of the Royal Statistical Society.16: 296–298.
Beck C., Grieser J., Kottek M., Rubel F., Rudolf B. 2006. Characterizing global climate change by means of Koppen climate classification. DWD, Klimastatusbericht 2005:139–149
Behera SK., Shukla AK. 2015. Spatial distribution of surface soil acidity, electrical conductivity, soil organic carbon content & exchangeable potassium, calcium & magnesium in some cropped acid soils of India. L& Degradation & Development 26:71-79.
Behera S.K, Ravi K, Mathura R.K. 2018. Spatial variability of soil properties & delineation of soil management zones of oil palm plantations grown in a hot & humid tropical region of southern India. Catena, 165:251-259.
Black C. A., Evans D. D., Dinauer R. C. 1965. Methods of Soil Analysis. American Society of Agronomy, Madison, WI, pp. 653-708.
Cambardella C. A., T. B. Moorman J. M. Novak T. B., Parkin D. L. Karlen R. F. Turco & A. E. Konopka. 1994. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J. 58:1501- 1511.
Davatgar N. Neishabouri MR., Sepaskhah AR .2012. Delineation of site specific nutrient management zones for a paddy cultivated area based on soil fertility using fuzzy clustering. Geoderma 173-174:111-118.
Delgardo A., Gomez JA. 2016. the Soil Physical, Chemical and Biological Properties. FJ Villalobos, E Fereres (Eds.), Principles of Agronomy for Sustainable Agriculture. © Springer International Publishing.
Denton OA, Aduramigba-Modupe VO, Ojo AO, et al. 2017. Assessment of spatial variability & mapping of soil properties for sustainable agricultural production using geographic information system techniques (GIS). Cogent Food & Agriculture 3:1279366.
FAO. 1994. Evaluation & farming systems analysis for l& use planning. FAO working document. FAO. Rome. 160 p.
Gee G.W., Buder J.W. 1986. Particle size analysis. In: Klute A., et al. (Ed.), Methods of Soil Analysis. Part 1. Agron. Monogr. 9. ASA & SSSA, Madison, WI, pp. 404-407.
Goovarets P. 1997. Geostatistics for Natural Resources Evaluation. Oxford Univ. Press, UK.
Hair J. F., Black B., Babin B., &erson R. E.& Tatham R. L. 2006. Multivariate data analysis (6th ed.). New Jersy: Prentice Hall.
Kaiser H. 1974. An index of factorial simplicity. Psychometrika, 39: 31–36.
Malakouti M.J., Tehrani M.M. 2005. The role of micronutrients in increasing the yield of agricultural products, micro elements with macro effect. Tarbiat Modares University Press, Tehran, Iran. (In Persian)
McLean E. 1982. Soil pH and lime requirement. Methods of Soil Analysis- Part2. Chemical & Microbiological properties. Agronomy Monograph, 9.2, pp. 199-224.
Minasny B. McBratney AB. 2006. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & Geoscience 32(9):1378-1388.
Mirzashahi K. & Bazargan K. 2015. Soil Organic Matter Management. Technical Journal, No. 535, Soil & Water Research Institute, 19 p. (In Persian)
Mohammad Zamani S., Ayoubi Sh., Khormali F. 2007. Spatial variation of soil properties & wheat yield in a part of Sorkhankalateh arable l&s, Golestan province. Journal of Soil & Water Sciences. 11 (40): 79-92.
Mohammadi J. 2006. Geostatistics, vol: 2. Pelk publication, 453 pages. (In Persian)
Moral FJ, Terron JM, Marques Da Silva JR. 2010. Delineation of management zones using mobile measurements of soil apparent electrical conductivity & multivariate geostatistical techniques. Soil & Tillage Research 106:335-343.
Moshiri et al. 2014. Guidelines for integrated soil fertility & plant nutrition management of wheat. Soil & water research institute (In Persian)
Nawar S. Corstanje R, Halcro G, et al. 2017. Delineation of soil management zones for variable-rate fertilization: A review. Advances in Agronomy 143:175-245.
Olsen SR, Cole CV, Watanable FS, et al. 1954. Estimation of available phosphorous in soils by extraction with sodium bicarbonate. In: Circular of United States Department of Agriculture No. 939.
Ovalles F.A., Collins M. E. 1988. Variability of northwest Florida soils by principal component analysis. Soil Science Society of America Journal, 52(5), 1430-1435.
Pallant, J. 2005. SPSS survival manual: a step by step guide to data analysis using spss. Buckingham: allen and unwin
Peralta NR, Costa JL. 2013. Delineation of management zones with soil apparent electrical conductivity to improve nutrient management. Computers & Electronics in Agriculture 99:218-226.
Schoning I., Totsche K.V., Kogel-Knabner I. 2006. Small Scale spatial variability of organic carbon stocks in litter & solum of a forested luvisol. Geoderma, 136: 631-642.
Seyedmohammadi J, Sarmadian F, Jafarzadeh AA, et al. 2018. Application of SAW, TOPSIS & fuzzy TOPSIS models in cultivation priority planning for maize, rapeseed & soybean crops. Geoderma 310:178-190.
Shukla AK, Sinha NK, Tiwari PK, et al. 2017. Spatial distribution & management zones for sulfur & micronutrients in Shiwalik Himalayan region of India. L& Degradation & Development, 28:959-969.
Singh A. K., R. Tripathy, U. K. Chopra. 2008. Evaluation of CERES-Wheat & Crop Syst models for water management, 95:776-786.
Tesfahunegn GB, Tamene L, Vlek PLG. 2011. Catchment-scale spatial variability of soil properties & implications on site-specific soil management in northern Ethiopia. Soil & Tillage Research, 117:124-139.
Tripathi R, Nayak AK, Shahid M, et al. 2015. Delineation of soil management zones for a rice cultivated area in eastern India using fuzzy clustering. Catena, 133:128-136.
Walkley AJ, Black IA. 1934. An examination of the Degtjareff method for determining soil organic matter & a proposed modification of the chromic acid titration method. Soil Science 37:29-38.
Wani MA, Shaista N, Wani ZM. 2016. Spatial Variability of Some Chemical & Physical Soil Properties in B&ipora District of Lesser Himalayas. Journal of Indian Society Remote Sensing, 45(4):611-620.
Weindorf DC, Zhu Y. 2010. Spatial variability of soil properties at Capulin Volcano, New Mexico, USA: Implications for sampling strategy. Pedosphere, 20(2):185-197.
Wilding LP, Bouma J, Goss DW. 1994. Impact of spatial variability on interpretive modeling. In: Bryant, R.B., Arnold, R.W. (Eds.), Quantitative modeling of soil forming processes. SSSA Spec. Publ. 39. ASA, CSSA, & SSSA, Madison, WI, USA, pp. 61-75.