بررسی اثر تعدیل کنندگی جاسمونات و بستر کشت ورمی کمپوست بر برخی صفات فیزیولوژیکی و بیوشیمیایی بادرشبو (Dracocephalum moldavica L.) تحت شرایط تنش سرب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه پیام نور مرکز مشهد

2 استادیار گروه زیست شناسی،دانشگاه پیام نور، ایران

3 دانش آموخته دکتری شیمی و حاصلخیزی خاک دانشگاه ارومیه

4 دانش آموخته دکتری فیزیولوژی گیاهی دانشگاه شیراز

10.30466/asr.2024.121556

چکیده

در سالهای اخیر آلودگی فلزات سنگین یکی از مشکلات اساسی محیط زیست و تولید گیاهان زراعی و دارویی بوده است که ترکیبات هورمونی نظیر جاسمونات در گیاهان می­تواند بر تعدیل این تنش موثر باشد. به منظور بررسی اثر جاسمونات و سرب بر برخی صفات فیزیولوژیکی و بیوشیمیایی گیاه دارویی بادرشبو (Dracocephalum moldavica L.) تحت شرایط اعمال ورمی کمپوست، آزمایشی به صورت فاکتوریل در قالب طرح کاملا تصادفی با سه تکرار انجام شد. تیمارها شامل سرب در 5 سطح (0، 100، 200 ،300 و 400 میلی گرم در کیلوگرم خاک) و جاسمونات در 4 سطح (0، 50، 100 و 150 میلی مول بر لیتر) در شرایط عدم کاربرد و کاربرد ورمی کمپوست (10 تن در هکتار) بودند. نتایج نشان داد که در مرحله رشد رویشی گیاه بادرشبو، با افزایش غلظت جاسمونات، وزن تر و خشک اندام­های هوایی و زیرزمینی گیاه، روند افزایشی نشان داد؛ به­طوری که بیشترین مقدار این صفات در تیمار 150 میلی مول بر لیتر جاسمونات حاصل شد. همچنین در هر دو مرحله رویشی و زایشی، با افزایش غلظت سرب تا 300 میلی گرم بر کیلوگرم، وزن تر و خشک اندام­های های هوایی، زیرزمینی و وزن تر کل گیاه، روند کاهشی معنی­داری نشان داد. اعمال ورمی کمپوست نیز منجر به افزایش وزن تر و خشک اندام­های هوایی، وزن خشک اندام زیرزمینی و وزن تر کل بادرشبو در مرحله رشد زایشی گردید. با افزایش سطح جاسمونات، مقدار هیدرات کربن برگی ابتدا روند افزایشی نشان داد و سپس کاهش یافت . همچنین با افزایش غلظت سرب، میانگین هیدرات کربن روند افزایشی معنی­داری داشت. با افزایش مقدار جاسمونات، میانگین پرولین برگی نیز، ابتدا روند کاهشی داشت و سپس افزایشی نشان داد. همچنین با افزایش سطح سرب، میانگین پرولین برگی روند افزایشی غیرخطی داشت. به­طور­کلی بررسی اثر سه گانه جاسمونات، سرب و ورمی کمپوست بر صفات مورد بررسی نشان داد که بیشترین مقدار هیدرات کربن و پرولین در مرحله رشد رویشی به ترتیب در تیمارهای تلفیقی 100 میلی مول بر لیتر جاسمونات، 200 میلی گرم در لیتر سرب در شرایط عدم اعمال ورمی کمپوست و صفر میلی مول بر لیتر جاسمونات، 400 میلی گرم در لیتر سرب در شرایط عدم اعمال ورمی کمپوست بدست آمد. در مرحله رشد زایشی نیز بیشترین مقدار هیدرات کربن و پرولین به ترتیب به تیمارهای تلفیقی صفر میلی مول بر لیتر جاسمونات، 300 میلی گرم در لیتر سرب در شرایط عدم اعمال ورمی کمپوست و 150 میلی مول بر لیتر جاسمونات، 100 میلی گرم در لیتر سرب در شرایط عدم اعمال ورمی کمپوست اختصاص یافت. به­طور کلی در میانگین سطوح سرب مورد بررسی، با افزایش جاسمونات و اعمال ورمی کمپوست، مقدار سرب درون اندام های گیاه، روند کاهشی نشان داد.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Effect of Jasmonate and Lead on some Physiological and Biochemical Traits of Dracocephalum Moldavica L. under the Application of Vermicompost

نویسندگان [English]

  • Raheleh Rahbarian 2
  • Atena Mirbolook 3
  • Asieh Behdad 4
1
2 Assistant Professor, Department of Biology, Payame Noor University, Iran
3 Ph.D. in chemistry and soil fertility of Urmia University
4 Ph.D in plant physiology, Shiraz University
چکیده [English]

In recent years, heavy metal pollution has been one of the basic problems of the environment and the production of agricultural and medicinal plants that compounds such as jasmonate in plants can be effective in modulating this stress. In order to investigate the effect of jasmonate and lead on some physiological and biochemical traits of the medicinal plant Dracocephalum Moldavica L. under the application of vermicompost, a factorial experiment was conducted in the form of a completely randomized design with three replications. The treatments included lead at five levels (0, 100, 200, 300, and 400 mg/kg soil) and jasmonate at four levels (0, 50, 100, and 150 mmol L-1) in the conditions of non-application and application of 10 tons per hectare of vermicompost. The traits investigated in this experiment included fresh and dry weight of shoot and root, the ratio of shoot to root dry weight, leaf area and the amount of carbohydrate, proline and  catalase in plant leaves. The results showed that in the vegetative growth stage of Dracocephalum Moldavica, with increasing jasmonate concentration, the fresh and dry weight of shoot and root increased, so that the highest amount of fresh and dry weight of shoot, dry weight of root and total weight of the plant was obtained in 150 mmol L-1 jasmonate treatment. In both vegetative, and reproductive stages, different levels of lead had a significant effect on the fresh and dry weight of vegetative organs, and with the increase in lead up to 300 mgkg-1, fresh and dry weight of shoot, root and fresh weight of the whole plant, showed a significant decreasing trend. The application of vermicompost also significantly increased the fresh and dry weight of shoot, the dry weight of the root and the fresh weight of the whole plant in the reproductive stage. With the increase of jasmonate levels, the amount of leaf carbohydrate first showed an increasing trend and then decreased. Also, with the increase in lead concentration, the average carbohydrate signifi cantly increased. With the increase in the amount of applied jasmonate, the average leaf proline also decreased at first, but at higher levels, the value of this parameter showed an increasing trend. Also, with the increase in lead level, the average leaf proline found a significant non-linear increasing trend. In general, the investigation of the triple effect of jasmonate, lead, and vermicompost on the studied traits showed that the highest amount of carbohydrate and proline in the vegetative growth stage were respectively in combined treatments of 100 mmol.l-1jasmonate, 200 mg.l-1 lead without applying vermicompost and 0 mmol.l-1 jasmonate, 400 mg.l-1 lead without applying vermicompost was obtained. In the reproductive growth stage, the highest amounts of carbohydrate and proline were obtained in the combined treatments of 0 mmol.l-1 jasmonate, 300 mg.l-1 lead without applying vermicompost and 150 mmol.l-1 jasmonate, 100 mg.l-1 lead without applying vermicompost. In general, in the mean of investigated lead levels with the increase of jasmonate and the application of vermicompost, the amount of lead in the plant organs showed a decreasing trend.

کلیدواژه‌ها [English]

  • vegetative stage
  • reproductive stage
  • carbon hydrate
  • proline
Abdusi S. 2018. Effects of cadmium and vermicompost on some growth parameters of spinach (Spinacea oleracea L.). Horticultural Plants Nutrition, 1(2): 25-36.
Adriano D.C. 2001. Trace Elements in Terrestrial Environments; Biochemistry, Bioavailability and Risks of Metals. Springer-Verlag. New York.
Ali A., Deng X., Hu X., Gill R.A., Ali S., Wang S., and Zhou W. 2015. Deteriorative effects of cadmium stress on antioxidant system and cellular structure in germinating seeds of Brassica napus L. Journal of Agricultural Science and Technology, 17: 63-74.
Amir Moradi Sh., Rezvani Moghadam P., Koocheki A., and Danesh Sh., Fotovat A. 2017. Effect of cadmium and lead on quantitative traits and essential oil percentage of peppermint (Mentha piperita L.). Journal of Agroecology, 9(1): 142-157.
Ansari M., and Malik A. 2007. Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater. Bioresource Technology, 98:149-3153.
Asadi S., Moghadam M., Ghasemi Pirbaluti A., and Fotovat A. 2020. The effect of foliar application of methyl jasmonate on some morphophysiological characteristics and lead absorption rate in basil medicinal plant (Ocimum basilicum L.) under lead stress. Environmental Stresses in Agricultural Sciences, 13(14): 1329-1344.
Azimi Gandomani M., Faraji H., Movahedi Dehnavi M., and Mirshekari A. 2017. The effect of calcium and jasmonic acid interaction on some physiological traits and tuber yield of three potato cultivars. Crop Physiology Journal, 9 (34): 37-59.
Bates L.S., Walderen R.D., and Taere I.D. 1973. Rapid determination of free proline for water stress studies. Plant Soil, 39: 205-207.
Chandlee J.M., and Scandalios J.G. 1984. Analysis of variants affecting the catalase development program in Maize scutellum. Journal of Apply Genetic 69: 71-77.
Clemente R., Waljker D.J., and Bernal M.P. 2005. Uptake of heavy metals and as by Brassica Juncea grown in a contamination soil in Arnalcollar (Spain): The effect of soil amendments. Environmental Pollution, 136: 46- 58.
Closas L.M., Toro F.J., Calvo G., and Pelacho A.M. 2004. Effect of methyl jasmonate on the first developmental stages of globe artichoke. Acta Horticulture, 660: 185-195.
Dastjerdi Z., Safipour Afshar A., and Saeed Nematpour F. 2015. The effect of methyl jasmonate on lead absorption and accumulation in radish (Raphanus sativus L.). Plant process and function, 4(1): 59-66.
Dubois D., Gilleres K.A., and Hamilton J.K. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3):350-356.
Eskandari S., Yadegari M., and Iranipour R. 2017. Investigating the accumulation of cadmium and lead in marigold medicinal plant (Calendula officinalis). Journal of Plant Environmental Physiology, 12(47): 92-76.
Golehdar M. 2008. Biosorption of heavy elements cadmium, nickel and cobalt by immobilized yeast of Saccaromyces cerevisia in compressed column. Faculty of Marine and Environmental Sciences. Tarbiat Modares University. Tehran.
Gorbanli M., and Kiapour A. 2014. The effects of different concentrations of lead and copper on the amount of malondialdehyde, proline and the activity of peroxidase and catalase enzymes in the medicinal plant of purslane (Portulaca oleracea L.). Research on Medicinal and Aromatic plants of Iran 28(2): 247-235.
Karimi, N. Khanahmadi, M. and Moradi, B. 2013. The effect of different concentrations of lead on some physiological parameters of Cynara scolymus. Journal of Plant Production, 20(1): 49-62.
Kehstegar M ., Afshar S.A., and Nematpour S.F. 2014. Effect of heavy metals cu and pb on some growth charactristics, proline content and lipid peroxidation in two varieties of mung bean (Vigna radiate). Journal of Crop Ecophysiology, 8(3): 263-374.
Mohammadian A., Barzin K., and Talei D. 2016. The effects of methyl jasmonate on some antioxidant enzymes and proline in Andrographis paniculata L. medicinal plant. Third National Congress of Biology and Natural Sciences of Iran. Tehran.
Naderi M.R., Danesh Shahraki A., and Naderi R. 2012. A review of plant remediation of soils contaminated with heavy metals. Human and Environment, 10(4),35-49.
Naderi N., Mirzamasoumzadeh B., and Aghaei A. 2013. Effects of different levels of lead (Pb) on physiological characteristics of sugar beet. International Journal of Agriculture and Crop Sciences, 5 (10): 1154-1157.
Oftadeh Fedafan A., and Amini Fard M.H. 2018. Investigating the vegetative and reproductive characteristics of saffron (Crocus sativus L.) under the influence of the application of different levels of urban waste vermicompost in the second year of the experiment. Research of Medicinal and Aromatic Plants of Iran, 34(3): 443-456.
Prasad M.N.V. 2004. Heavy Metal Stress in Plants: From Biomolecules to Ecosystems. Springer-Verlag, Berlin.
Rahimi G., and Noruzi Goldareh F. 2021. Effect of Eisenia fetida Earthworm in the Presence of Organic Matter for Bioremediation and Bioavailability of Cadmium in Contaminated Soils. Applied Soil Research, 9(2): 116-129.
Raicevic S., Kaludjerovic-Radoicic T., and Zouboulis A.I. 2004. In situ stabilization of toxic metals in polluted soils using phosphates: Theoretical prediction and experimental verification. Journal of Hazardous Mater, 117(1): 41-53.
Ranjbar M., Ismaili Sh., and Mushtaghi A.A. 2020. The effect of lead and nickel on some physiological and biochemical characteristics of dill (Anethum graveolens L.). Plant Biology of Iran, 12(2):1-22.
Razavinia S.M.B., Pourqhasemian N., and Najafi F. 2021. Studying the effect of heavy metals cadmium and lead on the growth traits and quality characteristics of Melissa officinalis L. Journal of Horticultural Sciences, 35(2): 235-251.
Rostami M., Kermian R., and Julayi Z. 2015. Investigating the effect of different heavy metals on physiological traits of saffron plant (Crocus sativus L.). Agriculture and Technology of Saffron, 3(2): 83-96.
Salimi F., and Shekari F. 2012. The effects of methyl jasmonate and salinity on some morphological characters and flower yield of German chamomile (Matricaria chamomilia L.). Journal of Plant Biology, 4: 27-39.
Sefidgar shahkolaie S., Barani Motlagh M. Dordipour, E. and Khormali F. 2020. Effects of organic and inorganic amendments on fractionation of cadmium during incubation time in a contaminated calcareous soil. Applied Soil Research, 8(3): 14-26.
Tabrizi L., Mohammadi S., Delshad M., and Motasharezadeh B. 2015. The effect of mycorrhiza fungus on the growth and yield of the rosemary medicinal plant (Rosmarinus officinalis L.) under lead and cadmium stress conditions. Environmental Sciences, 13(2): 37-48.
Walker D.J., Clemente R., and Bernal M.P. 2004. Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere, 57: 215-224.
Yagoubian Y., Siadat S. A., Moradi talavat M., and Pirdashti H. A. 2016. Quantification of the response of vegetative growth and chlorophyll fluorescence components of Melissa officinalis L. medicinal plant to the concentration of cadmium in the soil. Journal of Plant Production, 23(2): 165-185.