تصحیح اثر شوری خاک در اندازه‌گیری رطوبت خاک در بلوک‌های گچی با استفاده از روش سطح پاسخ

نوع مقاله : مقاله پژوهشی

نویسنده

اردبیل - پارس آباد – کیلومتر 17 جاده اصلاندوز - دانشکده کشاورزی و منابع طبیعی مغان

10.30466/asr.2025.55124.1839

چکیده

برای مدیریت و برنامه‌ریزی آبیاری، بررسی و اندازه‌گیری مداوم رطوبت خاک ضروری است.  یکی از ابزار‌های معمول در اندازه‌گیری رطوبت خاک بلوک‌گچی می‌باشد که به آسانی و سرعت مناسب انجام پذیر است. لیکن شوری خاک باعث ایجاد خطا در اندازه‌گیری رطوبت در بلوک‌گچی می‌گردد. در این تحقیق اثر شوری‌های مختلف آب آبیاری (1،2،6،10،18dS m-1) بر میزان تصحیح نتایج رطوبت قرائت بلوک‌گچی مدل 5910 به‌طور جداگانه در سه نوع بافت شن- لومی، لومی، لوم- رسی در دو تکرار در قالب طرح کاملا تصادفی و در گلدان بررسی گردید و توابع اصلاحی با استفاده از روش سطح پاسخ که تأثیر پارامترهای مؤثر بر مقدار تصحیح را مشخص می‌کند، برای هریک از بافت‌ها در شوری­های مختلف به‌دست آمد. نتایج نشان‌داد که در همه بافت‌ها، روش سطح پاسخ می‌تواند توابع اصلاحی برای تعیین مقدار اصلاح رطوبت  با دو متغیر مکش رطوبتی و شوری و سپس یا در نظر گرفتن عامل شوری، با احتمال خطای کم‌تر از 0001/0 برآورد نماید. دقت توابع اصلاحی در بافت لوم رسی، لوم شنی و لومی به میزان 2 درصد کاهش یافت. همچنین نتایج روش سطح پاسخ نشان داد که بهترین نوع مدل تصحیح شوری بر‌اساس متغیر‌ شوری و میزان مکش ماتریک خاک که از منحنی رطوبتی خاک تعیین شده بود،  مدل مکعبی با ضریب تبیین 96/0 برای خاک لومی است. ضریب تبیین این مدل برای بافت‌های لوم رسی و لوم شنی 94/0 حاصل شد. برای رسیدن به هدف کم‌ترین اصلاح رطوبتی در شرایط بیشینه شوری و مکش خاک در بافت‌های مختلف با روش سطح پاسخ، نتایج نشان‌داد که در بافت لوم-رسی، می‌توان کم‌ترین اصلاح رطوبتی به‌میزان  75/0(cm3 cm-3)  را در مکش 8 (bar) و شوری 18(dS m-1)، با بیشینه درجه‌ مقبولیت برابر 1، به‌دست آمد. همچنین درجه ‌مقبولیت برای خاک لومی و لوم- شنی به‌ترتیب برابر 96/0 و 95/0 محاسبه گردید.  نتایج نشان‌داد که  اصلاح رطوبتی در کلیه بافت‌ها، با افزایش میزان شوری خاک، افزایش ‌یافته و دقت توابع رطوبت اصلاح شده نیز افزایش می‌یابد. همچنین تغییرات توابع اصلاح رطوبتی نسبت به متغیر شوری به شکل سینوسی و نسبت به مکش ماتریک خاک به شکل تابع درجه دوم به‌دست آمد. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Correcting the effect of soil salinity in soil moisture measurement in gypsum blocks using the response surface method (RSM)

نویسنده [English]

  • yaser hoseini
Professor of Moghan College of Agriculture & Natural Resources - University of Mohaghegh Ardabili - Ardabil – Iran
چکیده [English]

Continuous evaluation and measurement of soil moisture content are necessary for irrigation management and planning. One common instrument for measuring soil moisture is the gypsum block method, which can be done easily and quickly. However, soil salinity can cause errors in measuring water content using the gypsum block model 5910-A. In this research, the effect of different irrigation salinities (1, 2, 6, 10, 18) dS m-1 was investigated on gypsum blocks in three textural classes; clay-loam, loam, and sandy-loamy. The study was conducted in a completely randomized laboratory experiment with two replications and correction functions were investigated using the response surface method to determine the effect of parameters on the correction value. Correction functions were developed for each texture at different salinities using response surface method. Results showed that the response surface method (RSM) could estimate correction functions with an error probability of less than 0.0001 using two variables; moisture suction and salinity, or considering just the salinity factor. The accuracy of correction functions slightly decreased in different textures of clay loam, sandy loam and loam. The response surface method showed that the best salinity correction model was based on the salinity variable and the amount of soil matric suction for all three soil texture. Soil matric suction was determined from the soil moisture curve using the Parabolic model with a goodness of fit (R2) of 0.96 for loamy soil, and 0.94 for clay-loam and sandy-loam textures. To minimize correction under maximum salinity and soil suction conditions in different textures, the response surface method showed that the lowest moisture modification in clay-loam texture could be0.075 (cm3/cm3) at a suction of 8 (bar) and salinity of 18 (dS m-1) with an acceptance degree of 1. The desirability degree for loam soil and sandy-loam was calculated as 0.96 and 0.95 respectively. The results indicated that moisture correction values increased with soil salinity, but the accuracy of estimation functions for moisture correction values also increased. The changes in the moisture modification function were sinusoidal and quadratic in relation to the soil salinity and matric suction variables, respectively.

کلیدواژه‌ها [English]

  • Ardabil province
  • Soil salinity
  • Moisture correction
  • Response level
  • Statistical distribution
Ajayi A. S., Eleta P. O., Duweni E. C., Ehiomoge P.  2019. Fabrication and Testing of Gypsum Blocks for Soil Moisture Determination: Journal of Natural Sciences Research, 9: 2225-0921
Asadzadeh F., Fegh-Hassan-Agha M., Khodaverdiloo H. 2016. Modeling of the effect of rock fragment cover and sizes on the sediment concentration using response surface method. Applied Soil Research. 3(1): 25-38.
Ashtiani S. M., Parsinjad M., Abbasi A. 2010. The effect of use urban wastewater in the irrigation of Sorghum on some physical properties of the soil. Journal of Soil Research, Soil and Water Sciences, 25(3): 242-253. (In Persian)
ASTM D 2216، Standard Test Methods for Laboratory Determination of Water(Moisture) Content of Soil and Rock by Mass, 430p.
Box G.E.P., Wilson K.B. 1951.On the Experimental Attainment of Optimum Conditions. Journal of the Royal Statistical Society. Series B (Methodological). 13(1):1-45.
Bouyoucos G.J., Mick A.H. 1948. A comparison of electric resistance units for making a continuous measurement of soil moisture under field conditions. Plant Physiology. Pp. 532-543.
Bouyoucos G. J. 1962. Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54(5): 464-465.
 Chow L., Xing Z., Rees H., Meng F., Monteith J., Stevens L. 2009. Field Performance of Nine Soil Water Content Sensors on a Sandy Loam Soil in New Brunswick, Maritime Region, Canada, Sensors,9)93(: 98-9413.
Dexter A.R. 2004. Soil physical quality. Part І. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma, 120: 201-214.
Evett S.R., Tolk J.A., Howell, T.A. 2006. Soil profile water content determination: Sensor accuracy, axial response, calibration, temperature dependence and precision. Vadose Zone J.  5: 894-907.
Fu M. C. 2015. Handbook of Simulation Optimization. Vol. 216. New York: Springer.
Ghahraman B., Davari K., Astarai A.R., Majidi M., Temski S. 2010. The possibility of correcting the effects of salinity on the reading of Gypsum block in measuring soil moisture. Water and soil, 23(1): 69-74. (In Persian)
Goncalves R., GloaguenT., Folegatti M., Libardi P., Lucas Y., Montes C. 2010. Pore size distribution in soils irrigated with sodic water and wastewater. R. Bras. Ci. Solo, 34: 701-707.
Hosseini Y. 2021. Application of the response surface method in optimizing the mixing ratio of soil with sawdust in different soil moisture treatments in greenhouse cucumber cultivation, water research in agriculture. 35(3): 303-321. (In Persian)
Hosseini Y. 2023. The effect of moisture and salinity stress on the morphological characteristics of the root and the performance of French tomato and determining the optimal point of performance using the response surface method. Water and irrigation. 51(3): 211-233. (In Persian)
Hoseini Y. 2024. Evaluation of Geostatistical and Response Surface Methods for Estimating Soil Saturated Hydraulic Conductivity Using Soil Physical Properties. Applied Soil Research, 11(4): 63-76.
Hignett C., Evett S.R. 2008. Direct and surrogate measures of soil water content. In Field Estimation of Soil Water Content: A Practical Guide to Methods, Instrumentation, and Sensor Technology; Evett, S.R., Heng, L.K., Moutonnet, P., Nguyen, M.L., Eds.; International Atomic Energy Agency: Vienna, Austria, Chapter 1, pp. 1-22.
Karami H.R, Keyhani M., Mowla D. 2016. Experimental analysis of drag reduction in the pipelines with response surface methodology. Journal of Petroleum Science and Engineering 138: 104-112.
Jalali, M. 2008. Effect of sodium and magnesium on kinetics of potassium release in some calcareous soils of western Iran. Geoderma. 145: 207-215.
Loeppert R.H., Sparks D.L. 1996. Carbonate and gypsum. p. 437-474. In: D.L. Sparks (ed.) Methods of soil analysis. Part 3 chemical methods. SSSA, Madison, WI.
Lu Y., Horton R., Ren T. 2018. Simultaneous determination of soil bulk density and water content: a heat pulse-based method. Eur. J. Soil Sci. 69 (5): 947–952.
Moradi D. 2022. Comprehensive Manual for Soil Mechanics Laboratory, Soil Engineering and Geotechnics. 396 p. (In Persian)
Mazaheri M.R., Mahmoodabadi M. 2012. Study on infiltration rate based on primary particle size distribution data in arid and semiarid region soils. Arab J Geosci 5: 1039–1046.
Montgomery D.C., Myers R.H. 1995. “Response Surface Methodology: Process and Product Optimization Using Designed Experiments”, Raymond H. Meyers and Douglas C. Montgomery, A Wiley-Inter Science Publications. 1204p.
Moriasi D.N., Arnold, J.G., Vanliew M.W., Bingner R.L., Harmel R.D., Veith T.L.  2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50: 885-900.
Nikravesh A., Moazed H., Broumandnasab S., Naseri A. 2013. The effect of irrigation water salinity with constant turbidity on soil moisture characteristic curve. Journal of water and soil, 27(4): 763-768. (In Persian)
Niknenjad D. 2015. The effect of salinity on the amount of moisture measured by TDR method in different soil textures, National Conference of Knowledge and Technology of Agricultural Sciences, Natural Resources and Environment of Iran, Tehran. (In Persian)
Peng W., Lu Y.L., Ren T.S., Horton R. 2021. Application of infinite line source and cylindrical-perfect-conductor theories to heat pulse measurements with large sensors. Soil Sci. Soc. Am. J. 56 (3): 94–99.
Peng W., Lu Y., Wang M., Ren T., Horton. 2022. Determining water content and bulk density: The heat-pulse method outperforms the thermo-TDR method in high-salinity soils, Geoderma, 407:55-64.
Rasheed M.W., Tang J., Sarwar A., Shah S., Saddique N., Khan M.U. 2022.  Soil Moisture Measuring Techniques and Factors Affecting the Moisture Dynamics: A Comprehensive Review. Sustainability. 14: 11-53.
Rhoades J.D, Manteghi N.A, Shouse P.J, Alves W.J. 1989. Soil electrical conductivity and salinity: new formulations and calibrations. Soil Sci. Soc. Am. J. 53: 433–439.
Shainberg I., Bresler E., Klausner Y. 1971. Studies on Na/Ca montmorillonite systems. I. The swelling pressure. Soil Sci. 111: 214-219.
Shirazi M., Khademorasoul A., Safieddine-Ardabili, S.M. 2019. Evaluation and optimization of the effects of soil salinity (EC) on soil erosive properties using response surface methodology. 16th Iranian Soil Science Congress, Zanjan. (In Persian)
Vories E., Sudduth K. 2021. Determining Sensor-based field capacity for irrigation scheduling. Agricultural Water Management, 250:12-25.
Sun Z.J., Young G.D., McFarlane R., Chambers B.M. 2000. The effect of soil electrical conductivity on moisture determination using time domain- reflectometry in sandy soil. Canadian Journal of Soil Science. 8: 21-29.
Wang Y., Lu Y., Horton R., Ren T. 2019. Specific heat capacity of soil solids: Influences of clay content, organic matter and tightly bound water. Soil Sci. Soc. Am. J. 83 (4):65-78.
White I., Knight J.H., Zegelin S.J., Topp G.C. 1994. Comments on ‘Consideration on the use of time-domain reflectometry (TDR) for measuring soil water content’ by W.R. Whaley. Euro. J. Soil Sci. 45: 503-508.