اثر دوده کربن بر برخی ویژگی‌های زیستی خاک و رشد گیاه باقلا در خاک آلوده به سرب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی خاک، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران

2 گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

10.30466/asr.2025.55873.1872

چکیده

آلودگی خاک به فلزات سنگین، به دلیل اثرات مخرب و زیان‌باری که بر تولیدات کشاورزی و تغذیه موجودات زنده می‌گذارند، بسیار حائز اهمیت است. لذا استفاده از راهکارهای مدیریتی برای کاهش اثرات مخرب آن‌ها  ضروری است. این مطالعه با هدف بررسی تأثیر دوده کربن و آلودگی سرب بر برخی ویژگی‌های زیستی خاک و رشد گیاه باقلا صورت گرفت. آزمایش به صورت گلدانی با چهار تکرار به صورت فاکتوریل با دو فاکتور آلودگی سرب در سه سطح (بدون آلودگی، 50 و 100 میلی­گرم بر کیلوگرم) و دوده کربن در چهار سطح (0، 1، 2 و 4 درصد وزنی) در قالب طرح پایه‌ کاملا تصادفی در گلخانه‌ای دانشگاه علوم کشاورزی و منابع طبیعی خوزستان انجام شد. نتایج نشان داد که آلودگی خاک به سرب موجب کاهش ارتفاع و وزن خشک گیاه شد. با افزایس سطح آلودگی خاک غلظت و جذب سرب در ریشه و اندام هوایی افزایش یافت. کاربرد دوده کربن موجب کاهش غلظت و جذب سرب در ریشه و اندام هوایی با  بیشترین کاهش در سطح چهار درصد دوده کربن مشاهده شد. افزودن دوده کربن باعث افزایش 86/22، 01/18 و 07/23 درصدی ارتفاع گیاه، وزن خشک ریشه و اندام هوایی نسبت به شاهد شد. بیشترین مقدار کربن زیتوده میکروبی، تنفس میکروبی خاک و فعالیت آنزیم کاتالاز در تیمار چهار درصد دوده کربن و بدون آلودگی خاک به سرب به ترتیب با مقادیر mg Cmic100g-1 35/13، mg CO2100g-1.day-189/64 و mLKMnO4 g-1.h-1 82/1 اندازه­گیری شد. نتایج این مطالعه نشان داد که افزودن دوده کربن توانست اثرات مخرب سرب را کاهش داده و شاخص‌های زیستی خاک و رشد گیاه را بهبود بخشد. با این حال، برای ارزیابی تأثیرات بلندمدت، انجام تحقیقات بیشتر ضروری است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Carbon Black on Some Biological Properties of Soil and Growth of Broad Bean in Lead-Contaminated Soil

نویسندگان [English]

  • neda maraghi 1
  • Nafiseh Rangzan 1
  • Naeimeh Enayatizamir 2
  • Mohammad Reza Ansari 1
1 Department of Soil Science, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.
2 Department of Soil Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

Soil contamination with heavy metals is highly significant due to its destructive and harmful effects on agricultural production and the nutrition of living organisms. Therefore, implementing management strategies to reduce their adverse effects is essential. This study investigated the effect of carbon black and lead contamination on selected biological properties of soil and the growth of broad bean plants. The pot experiment was carried out in a completely randomized factorial design with four replications, including two factors: lead contamination at three levels (no contamination, 50, and 100 mg/kg) and carbon black at four levels (0, 1, 2, and 4% by weight). The study was conducted in the greenhouse of Agricultural Sciences and Natural Resources University of Khuzestan. Results showed that lead contamination in soil decreased plant height and dry weight. As soil contamination increased, the concentration and uptake of lead in the roots and aerial parts of the plant also increased. The application of carbon black reduced the concentration of lead in the roots and aerial parts, with the highest reduction observed at the 4% carbon black level compared to the control. The addition of carbon black increased plant height, root dry weight, and aerial part dry weight by 22.86%, 18.01%, and 23.07%, respectively, compared to the control. The highest values of microbial biomass carbon, soil microbial respiration, and catalase enzyme activity were recorded in the treatment with 4% carbon black and no soil lead contamination, measuring 13.35 mgCmic100g-1, 64.89 CO2100g-1.day-1, and 1.82 mLKMnO4g-1.h-1, respectively. The results of this study showed that the addition of carbon black reduced the harmful effects of lead and improved soil biological indices and plant growth. However, further research is necessary to assess the long-term effects.

کلیدواژه‌ها [English]

  • Contamination
  • Lead
  • Respiration
  • Microbial Biomass Carbon
  • Plant
Referrence
Abdin Y., Usman A., Ok Y.S., Tsang Y.F. and Al-Wabel M. 2020. Competitive sorption and availability of coexisting heavy metals in mining-contaminated soil: Contrasting effects of mesquite and fishbone biochars. Environmental Research181, p.108846.
Abdollahi S., Golchin, A. 2018. Evaluate ability of uptake and translocation of lead in three varieties of cabbage. Iranian Journal of Soil and Water Research. 49 (1): 145-158. (In Persian)
Abdu N., Abdullahi A.A. and Abdulkadir A. 2017. Heavy metals and soil microbes. Environmental Chemistry Letters15(1): 65-84.
Albert H.A., Li X., Jeyakumar P., Wei L., Huang L., Huang Q., Kamran M., Shaheen S.M., Hou D., Rinklebe J. and Liu, Z. 2021. Influence of biochar and soil properties on soil and plant tissue concentrations of Cd and Pb: A meta-analysis. Science of the Total Environment755, p.142582.
Alkharabsheh H.M., Seleiman M.F., Battaglia M.L., Shami A., Jalal R.S., Alhammad B.A., Zhao Q., Li J., Sarkar B., Wu W., Li B., Liu R., Nawaz M., Zia-ur-Rehman M., Wang H. and Wu Z. 2020. Sorption mechanisms of lead on soil-derived black carbon formed under varying cultivation systems. Chemosphere261, p.128220.
Anderson J.P.E. 1982. Soil respiration. In. Methods of soil analysis, Part 2, Chemical and microbiological properties, ed. A.L. American Society of Agronomy, Madison Wisconsin, pp 831-871.
Anwar H., Shahid M., Niazi N.K., Khalid S., Tariq T.Z., Ahmad S., Nadeem M. and Abbas G. 2021. Risk assessment of potentially toxic metal (loid) s in Vigna radiata L. under wastewater and freshwater irrigation. Chemosphere265, p.129124.
Ara A. and Usmani J.A. 2015. Lead toxicity: a review. Interdisciplinary Toxicology8(2): 55-64.
Ashraf S., Ali Q., Zahir Z. A., Ashraf S., and Asghar H. N. 2019. Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology Environmental Safety. 174: 714–727.
Azadi N. and Raiesi, F. 2021. Biochar alleviates metal toxicity and improves microbial community functions in a soil co-contaminated with cadmium and lead. Biochar3(4): 485-498.
Bashir S., Hussain Q., Akmal M., Riaz M., Hu H., Ijaz S.S., Iqbal M., Abro S., Mehmood S. and Ahmad M. 2018. Sugarcane bagasse-derived biochar reduces the cadmium and chromium bioavailability to mash bean and enhances the microbial activity in contaminated soil. Journal of Soils and Sediments18: 874-886.
Bozar V., Rang Zan N. and Nadian Qomsheh H. 2010. The effect of carbon black and hair waste on heavy metals uptake and some growth parameters of lettuce and spinach irrigated with metal contaminated water. Agricultural Engineering, 42(1): 61-80.
Černý J., Balík J., Kulhánek M., Nedvěd V. 2008. The changes in microbial biomass C and N in long-term field experiments. Plant, Soil and Environment, 54(5), 212-218.
Chan K.Y., Van Zwieten L. Meszaros I. Downie A. and Joseph S. 2018. Using poultry litter biochars as soil amendments. Soil Research, 46(5): 437-444.
Chen D., Liu X., Bian R., Cheng K., Zhang X., Zheng J., Joseph S., Crowley D., Pan G. and Li L. 2018. Effects of biochar on availability and plant uptake of heavy metals–A meta-analysis. Journal of Environmental Management222: 76-85.
Çimrin K.M., Turan M. and Kapur B. 2007. Effect of elemental sulphur on heavy metals solubility and remediation by plants in calcareous soils. Fresenius Environmental Bulletin16(9): 1113-1120.
Cuerda-Correa E.M., Domínguez-Vargas J.R., Olivares-Marín F.J. and de Heredia J.B. 2010. On the use of carbon blacks as potential low-cost adsorbents for the removal of non-steroidal anti-inflammatory drugs from river water. Journal of Hazardous Materials177(1-3): 1046-1053.
Dalyan E., Yüzbaşıoğlu E. and Akpınar I. 2020. Physiological and biochemical changes in plant growth and different plant enzymes in response to lead stress. Lead in Plants and the Environment, 129-147.
Duo L., He L. and Zhao S. 2017. The impact of modified nanoscale carbon black on soil nematode assemblages under turfgrass growth conditions. European Journal of Soil Biology80: 53-58.
Food and Agriculture Organization and World Health Organization. 2015. General standard for contaminants and toxins in food and feed, CODEX STAN 193-1995. World Health Organization, Geneva
Ghouri F., Sarwar S., Sun L., Riaz M., Haider F.U., Ashraf H., Lai M., Imran M., Liu J., Ali S. and Liu X. 2024. Silicon and iron nanoparticles protect rice against lead (Pb) stress by improving oxidative tolerance and minimizing Pb uptake. Scientific Reports14(1), p.5986.
Gupta M., Dwivedi V., Kumar S., Patel A., Niazi, P. and Yadav V.K. 2024. Lead toxicity in plants: mechanistic insights into toxicity, physiological responses of plants and mitigation strategies. Plant Signaling & Behavior19(1), p.2365576.
He L., Zhong H., Liu G., Dai Z., Brookes P. C., Xu J., et al. 2019. Remediation of heavy metal contaminated soils by biochar: mechanisms, potential risks and applications in china. Environmental Pollution. 252: 846–855.
Hong Y.K., Kim J.W., Lee S.P., Yang J.E. and Kim S.C. 2022. Effect of combined soil amendment on immobilization of bioavailable As and Pb in paddy soil. Toxics10(2), p.90.
Houssou A.A., Jeyakumar P., Niazi N.K., Van Zwieten L., Li X., Huang L., Wei L., Zheng X., Huang Q., Huang Y. and Huang X. 2022. Biochar and soil properties limit the phytoavailability of lead and cadmium by Brassica chinensis L. in contaminated soils. Biochar4(1), p.5.
Hseu Z.Y., Chen Z.S., Tsai C.C., Tsui C.C., Cheng S.F., Liu C.L. and Lin H.T. 2002. Digestion methods for total heavy metals in sediments and soils. Water, Air, and Soil Pollution, 141: 189-205.
Irshad M.K., Ibrahim M., Noman A., Shang J., Mahmood A., Mubashir M., Khoo K.S., Ng H.S. and Show P.L. 2022. Elucidating the impact of goethite-modified biochar on arsenic mobility, bioaccumulation in paddy rice (Oryza sativa L.) along with soil enzyme activities. Process Safety and Environmental Protection160: 958-967.
Jackson M.L. 1973. Soil Chemical Analysis. Prentice Hall of India Private Limited, New Delhi.
Jia Z., Giehl R.F. and von Wirén N. 2022. Nutrient–hormone relations: Driving root plasticity in plants. Molecular Plant15(1): 86-103.
Johnson J.L., and Temple K.L. 1964. Some variables affecting the measurement of catalase activity in soil. Soil Science Society of America Journal, 28 (2): 207–209.
Kanwal A., Farhan M., Sharif F., Hayyat M.U., Shahzad L. and Ghafoor G.Z. 2020. Effect of industrial wastewater on wheat germination, growth, yield, nutrients and bioaccumulation of lead. Scientific Reports10(1), p.11361.
Karimi A. and Khodaverdiloo H. 2014. Soil biological quality as influenced by lead (Pb) contamination under Centaurea (Centaurea cyanus) vegetation. Soil Management and Sustainable Production, 4(1): 127-143.
Karlsson T, Elgh-Dalgren K, Björn E, Skyllberg U. 2007. Complexation of cadmium to sulfur and oxygen functional groups in an organic soil. Geochimica et Cosmochimica Acta. 71:604–614.
Kastori R., Petrović M. and Petrović, N. 1992. Effect of excess lead, cadmium, copper, and zinc on water relations in sunflower. Journal of Plant Nutrition15(11): 2427-2439.
Khan M.A., Ding X., Khan S., Brusseau M.L., Khan A. and Nawab J. 2018. The influence of various organic amendments on the bioavailability and plant uptake of cadmium present in mine-degraded soil. Science of the Total Environment636: 810-817.
Li S., Li Z., Feng X., Zhou F., Wang J. and Li Y. 2021. Effects of biochar additions on the soil chemical properties, bacterial community structure and rape growth in an acid purple soil. Plant, Soil & Environment67(3).
Liang G., Li S., Yu X., Bu Q., Qu H., Zhu H., Yao X., Lu A. and Gong W. 2022. Black carbon-mediated degradation of organic pollutants: A critical review. Process Safety and Environmental Protection160: 610-619.
Lin H., Liu C., Li B. and Dong Y. 2021. Trifolium repens L. regulated phytoremediation of heavy metal contaminated soil by promoting soil enzyme activities and beneficial rhizosphere associated microorganisms. Journal of Hazardous Materials402, p.123829.
Lindsay W.L. and Norvell W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science, 42: 421–428.
Liu S., Yang B., Liang Y., Xiao Y., and Fang J. 2020. Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils. Environmental Science and Pollution Research. 27: 16069–16085.
Long CM, Nascarella MA, Valberg PA. 2013. Carbon black vs. black carbon and other airborne materials containing elemental carbon: physical and chemical distinctions. Environmental Pollution, 181:271–86.
Mazaheri-Tirani M., Parsa Motlagh B., Ahmadzadeh M., Seyedi, A. 2024. Mitigating pb toxicity in Sesbania sesban L. through activated charcoal supplementation: a hydroponic study on enhanced phytoremediation. BMC Plant Biology, 24(1), 744.
Medalia AI, Rivin D, Sanders DR. 1983. A comparison of carbon black with soot. Science of the Total Environment, 31(1):1–22.
Mishra S., Srivastava S., Tripathi R.D., Kumar R., Seth C.S. and Gupta D.K. 2006. Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere65(6): 1027-1039.
Nannipieri P., Ascher J., Ceccherini M., Landi L., Pietramellara G. and Renella G. 2017. Microbial diversity and soil functions. European Journal of Soil Science68(1): 12-26.
Nelson D.W. & L.E. Sommers. 1996. Total carbon, organic carbon, and organic matter. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E. (Eds.), Methods of Soil Analysis, Part 3. Chemical Methods. Soil Sci. Soc. Am. Book Series, Number 5, Madison, WI: 961–1010.
Palansooriya K.N., Shaheen S.M., Chen S.S., Tsang D.C., Hashimoto Y., Hou D., Bolan N.S., Rinklebe J. and Ok Y.S. 2020. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environment International134, p.105046.
Pan H., Yang X., Chen H., Sarkar B., Bolan N., Shaheen S.M., Wu F., Che L., Ma Y., Rinklebe J. and Wang H. 2021. Pristine and iron-engineered animal-and plant-derived biochars enhanced bacterial abundance and immobilized arsenic and lead in a contaminated soil. Science of the Total Environment763, p.144218.
 
 
 
 
Phaniendra A., Jestadi D.B. and Periyasamy L. 2015. Free radicals: properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry30: 11-26.
Premalatha R.P., Poorna Bindu J., Nivetha E., Malarvizhi P., Manorama K., Parameswari E. and Davamani V. 2023. A review on biochar’s effect on soil properties and crop growth. Frontiers in Energy Research, 11, p.1092637.
Rađenović A. and Malina J. 2013. Adsorption ability of the carbon black for nickel ions uptake from aqueous solution. Hemijska Industrija67(1): 51-58.
Rahman S.U., Qin A., Zain M., Mushtaq Z., Mehmood F., Riaz L., Naveed S., Ansari M.J., Saeed M., Ahma I. and Shehzad M. 2024. Pb uptake, accumulation, and translocation in plants: Plant physiological, biochemical, and molecular response: A review. Heliyon.
Raj K. and Das A.P. 2023. Lead pollution: Impact on environment and human health and approach for a sustainable solution. Environmental Chemistry and Ecotoxicology5: 79-85.
Shakoori M., Babaakbari M., Abdoos S., Hassani, A. 2021. Effect of some chitosan-coated mineral amendments on lead uptake and growth characteristics of peppermint (Mentha piperita L.). Applied Soil Research, 9(3): 89-103. (In Persian)
Shu K., Zhou W., and Yang W. 2018. APETALA 2-domain-containing transcription factors: focusing on abscisic acid and gibberellins antagonism. New Phytologist. 217: 977–983.
Sobolev D. and Begonia M.F. 2008. Effects of heavy metal contamination upon soil microbes: lead-induced changes in general and denitrifying microbial communities as evidenced by molecular markers. International Journal of Environmental Research and Public Health5(5): 450-456.
Stevens R.G., Creissen G.P. and Mullineaux P.M. 1997. Cloning and characterisation of a cytosolic glutathione reductase cDNA from pea (Pisum sativum L.) and its expression in response to stress. Plant Molecular Biology35: 641-654.
Sun X., Sun M., Chao Y., Shang X., Wang H., Pan H., Yang Q., Lou Y. and Zhuge Y. 2023. Effects of lead pollution on soil microbial community diversity and biomass and on invertase activity. Soil Ecology Letters5(1): 118-127.
Tafvizi M., Motesharezadeh B. 2014. Effects of lead on iron, manganese, and zinc concentrations in different varieties of maize (Zea mays). Communications in soil science and plant analysis, 45(14): 1853-1865.
Verma S. and Dubey R.S. 2003. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Science164(4): 645-655.
Wan Y., Devereux R., George S.E., Chen J., Gao B., Noerpel M. and Scheckel K. 2022. Interactive effects of biochar amendment and lead toxicity on soil microbial community. Journal of Hazardous Materials425, p.127921.
Xiao R., Wang P., Mi S., Ali A., Liu X., Li Y., Guan W., Li R. and Zhang Z. 2019. Effects of crop straw and its derived biochar on the mobility and bioavailability in Cd and Zn in two smelter-contaminated alkaline soils. Ecotoxicology and Environmental Safety181: 155-163.
Xu Y., Seshadri B., Bolan N., Sarkar B., Ok Y.S., Zhang W., Rumpel C., Sparks D., Farrell M., Hall T. and Dong Z. 2019. Microbial functional diversity and carbon use feedback in soils as affected by heavy metals. Environment International125: 478-488.
Xu Y., Seshadri B., Sarkar B., Wang H., Rumpel C., Sparks D., Farrell M., Hall T., Yang X. and Bolan N. 2018. Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil. Science of the Total Environment621: 148-159.
Yoon J., Cao X., Zhou Q., Ma, L. Q. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the total environment, 368(2-3): 456-464.
Zhang F. P., Li C. F., Tong L. G., Yue L. X., Li P., Ciren Y. J., and Cao C. G. 2010. Response of microbial characteristics to heavy metal pollution of mining soils in central Tibet, China. Applied Soil Ecology, 45(3): 144-151.
Zulfiqar U., Farooq M., Hussain S., Maqsood M., Hussain M., Ishfaq M., Ahmad M. and Anjum M.Z. 2019. Lead toxicity in plants: Impacts and remediation. Journal of Environmental Management250, p.109557.