ارزیابی روش‌های زمین‌آماری کریجینگ معمولی و کوکریجینگ در تحلیل و پهنه‌بندی مکانی برخی ویژگی‌های هیدرولیکی خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اصفهان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اصفهان، ایران

2 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی اصفهان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اصفهان ایران.

10.30466/asr.2025.55902.1874

چکیده

روش‌های زمین‌آماری درسال‌های ‌های اخیر به‌عنوان ابزار قدرتمندی برای تحلیل مکانی ویژگی‌های خاک مورد توجه قرار گرفته است. این پژوهش با هدف مقایسه دو روش زمین‌آماری کریجینگ و کوکریجینگ در برآورد میزان رطوبت خاک در نقاط ظرفیت مزرعه (FC) و پژمردگی دائم گیاه (PWP) بر روی 101 نمونه خاک از مناطق مختلف استان اصفهان انجام شد. نمونه‏های خاک به صورت تصادفی از عمق 0 تا 30 سانتیمتری مناطق مورد نظر برداشت شد و ویژگی‏های بافت، FC و PWP مورد اندازه‏گیری قرار گرفت. برای بررسی و تشریح ساختار ویژگی‏های مورد مطالعه از نرم‌افزار GS+ نسخه 9 و برای ترسیم نقشه‌های ‌های پهنه بندی از نرم افزار ArcGIS  استفاده شد. میزان دقت مقادیر برآورد شده این متغیرها به کمک معیارهای آماری میانگین انحراف خطا و ریشه میانگین مربعات خطا محاسبه گردید. آنالیز همبستگی پیرسون ضرایب همبستگی بالا بین درصد ذرات رس، سیلت، شن، وزن مخصوص ظاهری و مواد آلی با مقادیر FC به ترتیب معادل 84/0، 81/0، 92/0-، 60/0 و 55/0و با PWP به ترتیب معادل 83/0، 78/0، 90/0-، 54/0- و 54/0 بود. نتایج آنالیز زمین‌آماری نشان داد که برای تمام ویژگی‌های اندازه‌گیری‌شده، مدل کروی بیشترین انطباق را با نیم‌تغییرنماهای تجربی محاسبه‌شده داشته است. تمامی متغیرهای مورد مطالعه به جز درصد کربن آلی از ساختار مکانی قوی برخوردار بودند. با توجه به نتایج، روش کریجینگ از دقت بالاتری در برآورد FC و PWP نسبت به کوکریجینگ برخوردار بود. مقادیر ضرایب تعیین برای مقادیر FC در روش‌های کریجینگ، کوکریجینگ (داده کمکی رس)، کوکریجینگ (داده کمکی سیلت) و کوکریجینگ (داده کمکی کربن آلی)  به ترتیب معادل 66/0، 62/0، 60/0 و 61/0 و برای مقادیر PWP به ترتیب 68/0، 66/0، 67/0 و 66/0بود؛ بنابراین روش کریجینگ معمولی به‌ویژه به دلیل سهولت و سرعت عمل بیشتر نسبت به روش کوکریجینگ، می‌تواند روش سودمندی در تخمین مقادیر FC و PWP با دقت قابل‌قبول باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Ordinary Kriging and Cokriging Geostatistical Methods for Spatial Analysis and Mapping of Soil Hydraulic Properties

نویسندگان [English]

  • parisa MASHAYEKHI 1
  • Mohsen Dehqani 2
1 Soil and Water Research Department, Isfahan Agricultural and Natural Resources Research and Education Center. Agricultural Research, Education and Extension organization (AREEO), Isfahan, Iran.
2 Assistant Professor of Soil and Water Research Department, Isfahan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
چکیده [English]

In recent years, geostatistical methods have become powerful tools for spatial analysis of soil properties. This study evaluated and compared two geostatistical methods, Kriging and Co-kriging, to estimate soil moisture at field capacity (FC) and permanent wilting point (PWP) using 101 soil samples collected from various regions of Isfahan province, Iran. Soil samples were randomly collected from a depth of 0 to 30 cm in the target areas, and soil texture, FC, and PWP properties were measured. GS+ version 9 software was used to examine and describe the structure of the studied properties, and ArcGIS software was used to create zoning maps. The accuracy of the estimated values was assessed using mean bias error (MBE) and root mean square error (RMSE). Pearson correlation analysis revealed strong correlations between clay, silt, sand percentages, bulk density, and organic matter percentage with FC (0.84, 0.81, -0.92, 0.60, and 0.55, respectively) and PWP (0.83, 0.78, -0.90, -0.54, and 0.54, respectively). Geostatistical analysis indicated that the spherical model provided the best fit for all measured variables and that all variables exhibited strong spatial dependence (sill to nugget plus sill ratio was less than 25%). Statistical comparisons showed that ordinary Kriging outperformed Co-kriging in estimating FC and PWP. The coefficients of determination (R²) for FC values in ordinary Kriging, Co-kriging with clay as auxiliary data, Co-kriging with silt as auxiliary data, and Co-kriging with organic matter as auxiliary data were 0.66, 0.62, 0.60, and 0.61, respectively, while for PWP values, they were 0.68, 0.67, 0.67, and 0.66, respectively. Therefore, ordinary Kriging, due to its simplicity and computational efficiency, can be a viable method for estimating FC and PWP with acceptable accuracy.

کلیدواژه‌ها [English]

  • Field capacity
  • Interpolation
  • Semi-variable
  • Spatial dependence
  • Wilting point
Referrence
Afzali A., Varwani V., Jafarinia R. 2018. Application of geostatistics technique in predicting spatial changes of soil texture (Case study: Farahan Plain, Central Province). Geographical Quarterly, 15(58): 1-16. (In Persian)
Amsili J.P., van Es H.M., Schindelbeck R.R. 2024. Pedotransfer Functions for Field Capacity, Permanent Wilting Point, and Available Water Capacity Based on Random Forest Models for Routine Soil Health Analysis. Communications in Soil Science and Plant Analysis, 55: 1967 - 1984.
Asgarzadeh H., Mosaddeghi M. R., Dexter A. R., Mahboubi A. A., and Neyshabouri M. R. 2014. Determination of soil available water for plants: consistency between laboratory and field measurements. Geoderma, 226–227: 8–20.
Basaran M., Erpul G., Ozcan A.U., Saigin D.S., Kibar M., Bayramin I,. Yilman F.E. 2011. Spatial information of soil hydraulic conductivity and performance of cokriging over kriging in a semi-arid basin scale. Environmental Earth Scince, 63: 827–838.
Başkan O., Erpul G., Dengiz O. 2018. Comparing the efficiency of ordinary kriging and cokriging to estimate the Atterberg limits spatially using some soil physical properties. Clay Minerals, 44: 181 - 193.
Bogunovic I., Paulo Pereira P., Brevik C. 2017. Spatial distribution of soil chemical properties in an organic farm in Croatia. Science of the Total Environment, 584–58: 535-545.
Castellini M., Vonella A.V., Ventrella D., Rinaldi M., and Baiamonte, G. 2020. Determining Soil Hydraulic Properties Using Infiltrometer Techniques: An Assessment of Temporal Variability in a Long-Term Experiment under Minimum- and No-Tillage Soil Management. Sustainability.
Delbari M., Jahani S. 2014. Investigating the spatial changes of salinity and sodium characteristics of the soils of Chat region in Golestan province. Soil Research (Soil and Water Sciences), 28 (2): 433-446. (In persion)
Duarte S., Vieira S. R., Giarola N.F.B., and Silva A.P. 2021. Kriging Versus Cokriging and Collokated Cokriging for Soil Physical-Hydraulic Attributes and their Influence on Soybean Growth. Brazilian Archives of Biology and Technology, Vol.64.
Erdogan Erten G., Yavuz M., Deutsch C.V. 2022. Combination of Machine Learning and Kriging for Spatial Estimation of Geological Attributes. Natural Resources Research, 1-23.
Foroughifar H., Jafarzadah A. A., Torabi Gelsefidi H., Aliasgharzadah N., Toomanian N., Davatgar N. 2011. Spatial Variations of Surface Soil Physical and Chemical Properties on Different Landforms of Tabriz Plain. Soil and water science, 21 (3): 1-21. (In persion)
Fuhg J.N., Fau A., Nackenhorst U. 2020. State-of-the-Art and Comparative Review of Adaptive Sampling Methods for Kriging. Archives of Computational Methods in Engineering, 28, 2689 - 2747. Klute, A. (1986). Methods of Soil Analysis. Part 1, Physical and Mineralogical Methods. 2nd American Society of Agronomy, Agronomy Monographs 9(1), Madison, Wisconsin, 1188 pp
Hengl T., Heuvelink G. B. M., Stein A. 2018. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma, 120(1-2): 75–93. https://doi.org/10.1016/j.geoderma.2003.08.018
Hoseini Y. 2024. Evaluation of geostatistical and response surface methods for estimating soil saturated hydraulic conductivity using soil physical properties. Applied Soil Research, 11 (4): 63-76. (In persion)
Li J., Heap A. D. 2014. Spatial interpolation methods applied in the environmental sciences: A review. Environmental Modelling & Software, 53: 173–189. https://doi.org/10.1016/j.envsoft.2013.12.008
Lim C. Y., Wu W.Y. 2022. Conditions on which cokriging does not do better than kriging. Journal of Multivariate Analysis, 192. https://doi.org/10.1016/j.jmva.2022.105084.
Mashayekhi, P., Marjovvi, A. R. 2023. Spatial distribution of some soil physico-chemical properties in agricultural soils of Isfahan province, Iranian Journal of Soil and Water Research, 54(2), 389-405. (In persion)
Nourzadeh M., Mahdian M. H. Malakouti M. J. 2010. Investigation and prediction spatial variability in chemical of agricultural soil using geostatistics. Archives of Agronomy and Soil Science: 1-15.
Pham T.G., Kappas M., Huynh C.V., Nguyen L.H. 2019. Application of Ordinary Kriging and Regression Kriging Method for Soil Properties Mapping in Hilly Region of Central Vietnam. ISPRS Int. J. Geo Inf., 8, 147.
Piri sahragard H., Zare Chahouki M.A. 2015. An evaluation of predictive habitat models performance of plant species in Hoze soltan rangelands of Qom province. Ecological Modelling, 309-310: 64-71.
Qiao J., Zhu Y., Jia X. 2019. Pedotransfer functions for estimating the field capacity and permanent wilting point in the critical zone of the Loess Plateau, China. J Soils Sediments 19, 140–147. https://doi.org/10.1007/s11368-018-2036-x
Rasheed M.W., Tang J., Sarwar A., Shah S., Saddique N., Khan M.U., Imran Khan M., Nawaz S., Shamshiri R.R., Aziz M., and Sultan M. 2022. Soil Moisture Measuring Techniques and Factors Affecting the Moisture Dynamics: A Comprehensive Review. Sustainability.
Rezaei H., Moshiri F., Balali M.R. Bazargan K., Esmaeelnejad L., Mallah S. 2024. Determination of Soil Fertility Management Zones in Honam Sub-Basin for Wheat Production Using Geostatistical Methods, Principal Component Analysis & Fuzzy Clustering (Lorestan Province). Applied Soil Research, 12(3): 16-32.
Romero E., Vecchia G.D., and Jommi C. 2011. An insight into the water retention properties of compacted clayey soils. Geotechnique, 61: 313-328.
Ribeiro D.L., Maltauro T.C., Guedes L.P., Uribe-Opazo M.A., Dalposso G.H. 2024. Directional Differences in Thematic Maps of Soil Chemical Attributes with Geometric Anisotropy. Stats.
Sani S., Abdulkadir A.N., Hmad Pantami S.A., Sani M., Amin A.M., Abdullahi M.Y. 2023. Spatial Variability and Mapping of Selected Soil Physical Properties under Continuous Cultivation. Turkish Journal of Agriculture - Food Science and Technology.
Seyed Jalali S.A.R., Sarmadian F., MohammadEsmaielc Z., Navidia V. 2019. Assessment of spatial variability of cation exchange capacity with kriging and cokriging. Desert, 24(1): 99-108.
Tagore G.S., Sethy S., Kulhare P.S., Sharma G.D. 2022. Characterization of Spatial Variability of Micro Nutrients in Soils: Classical Vs. Geo-Statistical Approach. Communications in Soil Science and Plant Analysis, 54: 472 - 487.
Walkley A.J., Black, I.A. 1934. Estimation of soil organic carbon by the chromic acid titration method Soil Science, 37, 29-38.
Wan Y., Liu X., Chen H., Wang Y. 2024. Comparative evaluation of kriging and cokriging methods for spatial prediction of soil properties under limited sampling. Catena, 232, 107426. https://doi.org/10.1016/j.catena.2023.107426
Wan H., Li J., Shang S., Rahman K.U. 2021. Exploratory factor analysis-based co-kriging method for spatial interpolation of multi-layered soil particle-size fractions and texture. Journal of Soils and Sediments, 21: 3868 - 3887.
Wang L., Tang L., Wang Z., Liu H., Zhang W. 2020. Probabilistic characterization of the soil-water retention curve and hydraulic conductivity and its application to slope reliability analysis. Computers and Geotechnics, 121, 103460.
Xing-Yi Z., Yue-Yu' S., Xu Dong Z., Kai M. Herbert S.J. 2007. Spatial Variability of Nutrient Properties in Black Soil of Northeast China. Pedosphere, 17(1): 19-29.
Xu T., Liu Y., Tang L., Liu C. 2020. Improvement of Kriging interpolation with learning kernel in environmental variables study. International Journal of Production Research, 60: 1284 - 1297.
Yang H., Zhang F., Chen Y., Xu T., Cheng Z., Liang J. 2016. Assessment of reclamation treatments of abandoned farmland in an arid region of China. Sustainability, 8, 1183.
Yu J., Li Y., Guangxuan H., Di Z., Yuqin F., Bo G., Guangmei W., Kai Ning., Wang J. 2014. The spatial distribution characteristics of soil salinity in coastal zone of the Yellow River Delta. Environmental Earth Science, 72: 589-599. https://doi.org/10.1007/s12665-013-2980-0.
Zhang J., Li X., Yang R., Liu Q., Zhao L., Dou B. 2017. An Extended Kriging Method to Interpolate Near-Surface Soil Moisture Data Measured by Wireless Sensor Networks. Sensors (Basel, Switzerland), 17.