تاثیر نیتروژن (از دو منبع اوره و بی‌کربنات آمونیوم) و فسفر بر برخی صفات زراعی ذرت در یک خاک لوم شنی قلیایی در شرایط گلخانه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد، گروه علوم و مهندسی خاک، دانشکده کشاورزی. دانشگاه تبریز

2 عضو هیات علمی گروه علوم و مهندسی خاک دانشگاه تبریز

3 گروه علوم و مهندسی خاک، دانشکده کشاورزی دانشگاه تبریز

10.30466/asr.2025.56412.1898

چکیده

تاکنون پژوهشی ‌در مورد برهمکنش نیتروژن(N) از منبع بی‌کربنات آمونیوم و کود فسفره (P) در خاک‌های قلیایی و اثر بر صفات زراعی گیاه ذرت گزارش نشده است. لذا هدف از این تحقیق، مطالعه اثر متقابل بی‌کربنات آمونیوم با فسفر بر برخی صفات زراعی گیاه ذرت از طریق شبیه سازی مصرف نواری در گلدان و مقایسه با اوره کود رایج نیتروژنه در کشور ما بود. در این راستا با کاشت گیاه ذرت (Zea mays L.) به‌صورت فاکتوریل و در قالب طرح پایه کاملاً تصادفی در سه تکرار در شرایط گلخانه ای این پژوهش اجرا شد. فاکتور اول فسفر در دو سطح (صفر و 25 میلی‌گرم بر کیلوگرم) از منبع مونوکلسیم فسفات مونوهیدرات خالص [Ca(H2PO4)2.H2O] و فاکتور دوم نیتروژن در هفت سطح صفر، 75، 150 و 300 میلی‌گرم بر کیلوگرم خاک از دو منبع اوره [CO(NH2)2] و بی‌کربنات آمونیوم (NH4HCO3) بودند. کود فسفر قبل از کاشت 8 سانتی‌متر پایین‌تر از جایگاه در نظر گرفته شده برای بذور به‌صورت جامد در خاک گلدان جایگذاری شد. پس از کاشت بلافاصله یک‌ سوم نیتروژن به‌صورت محلول در 6 سانتی‌متر زیر بذور و حدود 2 سانتی‌متر بالای کود فسفر تزریق شد. بقیه کود نیتروژن به همین روش 20 و 40 روز بعد از کشت گیاه در خاک گلدان تزریق شد. 80 روز پس از کاشت و قبل از برداشت گیاه، شاخص کلروفیل برگ‌ها، قطر ساقه و ارتفاع گیاه و پس از برداشت وزن تر و خشک بخش هوایی و ریشه به همراه حجم ریشه اندازه‌گیری شدند. بر اساس نتایج حاصله  افزایش سطح نیتروژن مصرفی شاخص کلروفیل برگ را بهبود بخشید اما این افزایش با کاهش وزن تازه و خشک بخش هوایی و ریشه همراه بود. همچنین افزایش سطح نیتروژن باعث کاهش نسبت ریشه به بخش هوایی و قطر ساقه شد. منبع بی‌کربنات آمونیوم نسبت به اوره، در سطوح 150 و 300 میلی‌گرم نیتروژن بر کیلوگرم خاک، وزن خشک بخش هوایی و در سطوح 75 و 150 میلی‌گرم نیتروژن بر کیلوگرم خاک وزن خشک ریشه بیشتری داشتند. مصرف فسفر باعث افزایش وزن تر و خشک بخش هوایی و ریشه و قطر ساقه شد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Nitrogen (From two sources: Urea and Ammonium bicarbonate) and Phosphorus on Some Agronomic Traits of Corn in an Alkaline Sandy loam Soil under Greenhouse Conditions

نویسندگان [English]

  • Hamid Bromand Duzduzan 1
  • Adel Reyhanitabar 2
  • Nosratollah Najafi 3
  • Seyyed Javad Ghoreyshi 3
1 Soil Science Dept, Faculty of Agriculture.University of Tabriz
2 Soil Science,Faculty of Agriculture,University of Tabriz,Tabriz,Iran
3 Soil Science Dept, Faculty of Agriculture.University of Tabriz
چکیده [English]

To date, no study has reported on the interaction between nitrogen (N) from ammonium bicarbonate and phosphorus (P) fertilizer in alkaline soils and their effects on the agronomic traits of corn (Zea mays L.). Therefore, the aim of this research was to investigate the interaction of urea and ammonium bicarbonate with phosphorus on some agronomical traits of corn plant by simulating band application in pots with urea, the common nitrogen fertilizer in our country as a comparison. Accordingly, an experiment was conducted using a factorial arrangement based on a completely randomized design with three replications under greenhouse condition. The experimental treatments included phosphorus at two levels (zero and 25 mg per kg of soil) from pure mono-calcium phosphate, and nitrogen at seven levels (zero, 75, 150, and 300 mg per kg) from two sources: urea and ammonium bicarbonate. Phosphorus fertilizer was placed in solid form in the pot soil 8 cm below the intended seed location before planting. Immediately after planting, one-third of the nitrogen was applied in solution form 6 cm below the seeds and about 2 cm above the phosphorus fertilizer. The remaining nitrogen fertilizer was injected into the pot soil in the same manner 20 and 40 days after planting the corn. After 80 days from planting and before harvest, leaf chlorophyll index, stem diameter, and plant height were measured. After harvest, fresh and dry weights of the shoot and roots, as well as root volume, were measured. The results indicated that increasing applied nitrogen levels enhanced the leaf chlorophyll index; however, this increase was accompanied by reductions in both fresh and dry weights of the shoot and root, as well as decreases in the root-to-shoot ratio and stem diameter. At nitrogen levels of 150 and 300 mg per kg of soil, ammonium bicarbonate treatments resulted in greater shoot dry weight compared to urea; similarly, at 75 and 150 mg levels, higher root dry weights were observed. The application of phosphorus fertilizer increased the fresh and dry weights of both shoot and roots, as well as stem diameter.

کلیدواژه‌ها [English]

  • Ammonia volatilization
  • Cholorophil index
  • Interaction effects
  • Plant nutrition
Referrence
Abbasi M. K., Tahir M. M., Sadiq A., Iqbal M., and Zafar M. 2012. Yield and nitrogen use effciency of rainfed maize response to splitting and nitrogen rates in Kashmir, Pakistan. Agronomy Journal, 104:448–457.
Allison L.E., and Moodie C.D. 1965. Carbonate. In C.A. Black et al., Eds., Methods of Soil Analysis, Part 2- Chemical and Microbiological Properties 1st ed. American Society for Agronomy, Madison, WI, pp. 1379–1396.
Bruns H.A., and Croy L.I. 1985. Root volume and root dry weight measuring system for wheat cultivars. Cereal Research Communications, 13:177-183.
Bjorkman T. and Reiners S. 2014. Application of bicarbonate to high-phosphorus soils to increase plant-available phosphorus. Soil Science Society of America Journal 78:319-324.
Bjorkman T. and Reiners S. 2015. Meeting Initial snap bean seedling requirements with starter phosphorus or bicarbonate to solubilize soil phosphorus in high-phosphorus soils. Horticulture Science 50:590–596.
Chaker Al-Hosseini M. R., Ronaghi A. M., Maftoon M. and Karimian N. A. 2002. Soybean response to iron and phosphorus application in a calcareous soil. Agricultural Sciences and Technologies and Natural Resources, 6(4):91-101.
Elahi P., Lak S. and Mojaddam M. 2023. Effect of water deficit and nitrogen levels on some traits affecting spring corn grain yield in Khuzestan climate. Journal of Soil Research, 37(11) 1-15. (In Persian)
Fageria N. K. 2014. Nitrogen Management in Crop Production, CRC Press.
Fageria N. K., He Z. L. and Baligar V. C. 2017. Phosphorus Management in Crop Production. CRC Press.
Lindsay W.L., and Norvell W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of American Journal 42:421-428.
Fallah Nosratabad A., Khoshru B., Khosravi H. 2025. Increasing the bioavailability of phosphorus through phosphate solubilizing bacteria to improve organic farming systems. Applied Soil Research, 13(1): 93-113.
Fan M. and MacKenzie A. 1995. The toxicity of banded urea to corn growth and yield as influenced by triple superphosphate. Canadian Journal of Soil Science, 75: 117-122.
Gee G.W., and D. Or. 2002. Particle-size analysis. Pp. 255-293. In: Dane, J. H.and G. C. Topp, Eds., Methods of Soil Analysis, Part 4- Physical Methods. Agronomy Monograph, Vol. 9. ASA and SSSA, Madison, WI
Gheibi M. N., Asadi F. and Tehrani M. M. 2014. Guide to Integrated Management of Soil Fertility and Corn Nutrition. Iranean Soil and Water Research Institute Publication.Tehran, Iran. (In Persian)
Gee G.W., and D. Or. 2002. Particle-size analysis. Pp. 255-293. In: Dane, J. H.and G. C. Topp, Eds., Methods of Soil Analysis, Part 4- Physical Methods. Agronomy Monograph, Vol. 9. ASA and SSSA, Madison, WI.
Hawkesford M., Horst W., Kichey T., Lambers H., Schjoerring J., Moller I.S, and White P. 2012. Functions of macronutrients, p. 135–189, In P. Marschner, ed. Marschner’s Mineral Nutrition of Higher Plants. Elsevier, London, UK.
Havlin J.L., Beaton J.D., Tisdale S.L., and Nelson W.L. 2022. Soil Fertility and Fertilizers, 6 (Eds). Soil Science Society of America. Madison, Wisc.
Imam Yahiya. 2007. Grain Production. Shiraz University Press. Shiraz, Iran. Third edition. 190 pages. (In Persian)
Khalkhal K., Reyhani Tabar A., Najafi N. 2016. Determination of soil Iron critical level for corn plant in East Azerbaijan province. Journal of Soil Management and Sustainable Production. 6(3): 1-21. (In Persian)
Kirkham M. B. 2014. Principles of Soil and Plant Water Relations. Academic Press.
Lindsay W. L. and Norvell W. A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42: 421–428.
Mahohi A., Khatinzadeh H.A., Nouri M., Dariush Nikfar D. 2023. Consequences of urea phosphate fertilizer application on the nutrient status and quantitative and qualitative yield of sugarcane. Applied Soil Research, 11(2): 13-27
Maghsoudi M.R., Reyhani Tabar A., N. Najafi. 2014. Evaluation of some extraction methods for determination of corn available phosphorus in some calcareous soils of east Azerbaijan province. Water and Soil Science. 24(2): 199-214. (In Persian)
Malkooti M.J. and A.H. Reazi Hamedani. 1991. Soil Fertility and Fertilizers (Translation in Farsi). Third edition. University Publishing Center.Tehran, Iran. (In Persian)
Mirzashahi K. Salimpour S., Paknejad A. R. 2015. Fertilizer recommendations for crops and horticulture in the north of Khuzestan Province. Iranean Soil and Water Research Institute.Tehran, Iran. (In Persian)
Moayyeri M. 2010. Irrigation of summer corn fields in Khuzestan province. Prepared by the Agricultural Engineering and Technical Research Institute, Knowledge Network and Extension Media Office. Agricultural Education Publication, Iran. (In Persian)
Mohammad R., Javad K. and Mohammad H. 2004. Biological response of maize to variable grades of phosphorus and planting geometry. International Journal of Agriculture & Biology. 6(3):462-469.
Nelson D. W. and L. E. Sommers. 1996. Total carbon, organic carbon, and organic matter. In: D. L. Sparks Ed. Methods of Soil Analysis. Part 3. SSSA Madison, W. I.pp. 961-1010.
Omar S., Abd R., Ghani H., Khaeim A.H., Sghaier and Jolánkai M. 2022. The effect of
nitrogen fertilisation on yield and quality of maize (Zea mays L.). Acta Alimentaria,
51(2): 249-258.
Ouyang D. S., Mackenzi A. F. and Fan M. X. 1999. Availability of banded triple superphosphate with urea on phosphorus use efficiency by corn. Nutrient Cycling in Agroecosystems, 53: 237-248.
Olsen S. R. and Sommers L.E. 1982. Phosphorus. In A.L. Page, R.H. Miller, and D.R. Keeney, Eds, Methods of Soil Analysis. 2nd ed. Part 2. Agronomy No. 9. American Society of Agronomy, Madison, WI, pp. 403–430
Roberts K. G., Gloy B. A., Joseph S., Scott N. R. and J. Lehmann. 2010. Life cycle assessment of biochar systems: Estimating the energetic, economic and climate change potential. Environmental Science & Technology, 44: 827-833
Rhoades J.D. 1996. Salinity: electrical conductivity and total dissolved solids. In D.L. Sparks et al., Eds. Methods of Soil Analysis, Part 3-Chemical Methods. SSSA Book Series No. 5, SSSA and ASA, Madison, WI, pp. 417–436.
Richards L. A. 1954. pH reading of saturated soil past. USDA Agriculture Handbook.
Roosta H. R., and Schjoerring J. K. 2007. Effects of ammonium toxicity on nitrogen metabolism and elemental profile of cucumber plants. Journal of Plant Nutrition 30: 1933–1951.
Schlegeel A. and Havlin J. L. 2017. Corn yield and grain nutrient uptake from 50 years
of nitrogen and phosphorus fertilization. Agronomy Journal, 109:335-342.
Sommer S. G., Schjoerring J. K. and O. Den mead. 2004. Ammonia emission from mineral fertilizers and fertilized crops. Advances in Agronomy, 82: 557-622.
Yazdani Motlagh N. 2011. The combined effect of nitrogen and phosphorus on two rice cultivars (Hashemi and Ali Kazemi) under flooded and non-flooded conditions. Master's thesis. Department of Soil Science, Faculty of Agriculture, University of Tabriz. (In Persian)