تاثیر متغیر‌های ورودی بر قابلیت برآورد مقدار رطوبت خاک از طریق مدل های مختلف منحنی نگهداشت آب خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 - دانشجوی سابق کارشناسی ارشد، گروه خاکشناسی دانشکده کشاورزی دانشگاه بوعلی سینا

2 استادیار گروه خاکشناسی دانشکده کشاورزی دانشگاه بوعلی سینا

3 دانشیار گروه آبیاری دانشکده کشاورزی دانشگاه بوعلی سینا

چکیده

منحنی نگهداشت آب خاک یکی از ویژگی­های اصلی خاک است و کاربردهای فراوانی دارد. اندازه­گیری مستقیم این منحنی بسیار زمان بر و پر‌هزینه است. بنابراین، این منحنی اغلب با استفاده از روش‌های غیرمستقیم از جمله توابع انتقالی خاک برآورد می­گردد. مدل‌های پرشماری برای کمی­سازی این منحنی ارائه شده است و همچنین توابع انتقالی فراوانی برای پیش‌بینی این منحنی ایجاد گردیده است. با این وجود قابلیت برآورد مقدار رطوبت خاک با استفاده از سطوح متفاوت متغیر‌های ورودی توابع انتقالی از طریق مدل‌های متفاوت منحنی نگهداشت آب خاک با استفاده از شبکه‌های عصبی مصنوعی مورد بررسی قرار نگرفته است. در این پژوهش 75 نمونه خاک از استان گیلان جمع‌آوری و آزمایش­های پایه روی آن‌ها انجام شد. آب خاک در 12 مکش (صفر، 1 ، 2، 5 ،10 ، 25 ، 50 ، 100 ، 200 ، 500 ، 1000 و 1500 کیلوپاسکال) اندازه­گیری و ده مدل بر آن‌ها برازش داده شد. معادله پریر بر داده‌های توزیع اندازه ذرات و خاکدانه­ها برازش شده و پارامترهای فراکتالی مربوطه به‌دست آمدند. پارامترهای فراکتالی ذرات و خاکدانه­ها هر کدام در مراحل جداگانه به همراه رس، شن و جرم مخصوص ظاهری برای برآورد رطوبت از طریق مدل­های مختلف استفاده شدند. در بین مدل­های مورد مطالعه مدل سکی، فرمی و گاردنر با دقت بالاتری در مقایسه با سایر مدل­های منحنی نگهداشت آب خاک برآورد شدند. بر خلاف انتظار دقت برآورد مدل­های دکستر و دورنر پایین بود. نتایج تجزیه کلاستر نشان داد که مدل­های دورنر و دکستر هر کدام در یک گروه جداگانه قرار گرفتند. مشاهده شد که تغییر برآورد‌گرها باعث تغییر در دقت برآورد رطوبت توسط مدل‌ها شده و جایگاه و رتبه‌بندی مدل‌ها در جداول را تغییر داد. در سطح اول مدل­های فرمی و دکستر به ترتیب بهترین و ضعیف­ترین دقت برآورد را داشتند. ولی درسطح دوم برآورد­گرها مدل گاردنر و تانی به‌ترتیب بهترین و ضعیف­ترین دقت برآورد را نشان دادند. 

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Input Variables on Predictability of Soil Water Content through Different Soil Water Retention Curve Models

نویسندگان [English]

  • Eisa Ebrahimi 1
  • Hosein Bayat 2
  • Hamid Zare Abyaneh 3
1 Former MSc Student of Soil Science, Department of Soil Science, Faculty of Agriculture, Bu Ali Sina University, Hamadan, Iran.
2 Assistant Professor, Department of Soil Science, Faculty of Agriculture, Bu-Ali Sina University, Hamadan, Iran
3 Associate Professor, Department of Irrigation, Faculty of Agriculture, Bu Ali Sina University, Hamadan, Iran
چکیده [English]

Soil water retention curve (SWRC) is one of the main soil characteristics with many applications. Its direct measurement is costly and time-consuming. Therefore, it is often predicted through indirect methods such as pedotransfer functions (PTFs). Many models have been developed for quantitative description of SWRC and also a lot of PTFs has been developed for their estimation. However, predictability of soil water content through different SWRC models by using different input variables and artificial neural networks have not been investigated, so far. In this study, 75 soil samples were taken from Guilan province and basic soil properties have been measured. Water contents were measured at 12 matric potentials (0, 1, 2, 5, 10, 25, 50, 100, 200, 500, 1000 and 1500 kPa). Ten well known and frequently applied SWRC models were fitted to the measured data. The Perrier model was fitted on the particles and aggregates size distributions and fractal parameters were obtained. The fractal parameters of particles and aggregates size distributions along with clay, sand and bulk density were used to estimate water content in two input levels by different SWRC models. Results showed that the models of Seki, Fermi and Gardner were predicted more accurately, in comparison with other models. In spite of the expectation, the models of Dexter and Durner were not predicted accurately and according to the cluster analysis were classified in different groups. It was observed that the prediction capabilities of different models were changed and their arrangements were altered in the tables by changing input variables. Overall, Fermi and Dexter models had the highest and the least predictability with the first input levels, respectively. Gardner and Tani models had the highest and the least predictability with the second input levels, respectively.

کلیدواژه‌ها [English]

  • Cluster analysis
  • Fractal parameters
  • Soil water retention curve models
Reference
Agyare W, Park S and Vlek P. 2007. Artificial neural network estimation of saturated hydraulic conductivity. Vadoze Zone Journal, 6(2): 423-431.
Arya LM and Paris JF. 1981. A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data. Soil Science Society of America Journal, (45): 1023–1030.
Baker L, and Ellison D. 2008. Optimisation of pedotransfer functions using an artificial neural network ensemble method. Geoderma, (144): 212–224.
Bayat H, Ebrahimi E, Rastgo M, Davatgar N and Zareabiane H. 2013. Investigating the fitting accuracy of different soil water characteristic models on various soil textural classes. Journal of Soil and Water Knowledge, 23(3): 159-175. (In Persian).
Bezdek JC, Keller J, Krishnapuram R and Pal NR. 1999. Fuzzy models and algorithms for pattern recognition and image processing, Kluwer, Boston, London, 776p.
Bezdek JC and Pal SK. 1992. Fuzzy models for pattern recognition—methods that search for structures in data, IEEE Press, Piscataway, USA.
Brutsaert, W. 1966. Probability laws for pore-size distribution. Soil Science Society of America Journal, 101: 85–92. 412.
Brooks RH and Corey AT. 1964. Hydraulic properties of porous media. ColoradoStateUniversity Hydrology Papers No. 3, Fort Collins, 27p.
Buchan GD, Grewal K and Robson A. 1993. Improved models of particle-size distribution: An illustration of model comparison techniques. Soil Science Society of America Journal, 57(4): 901-908.
Campbell GS. 1974. A simple method for determining unsaturated conductivity from moisture retention data. Soil Science, 117(6): 311-314.
Cazemier D, Lagacherie P and Martin-Clouaire R. 2001. A possibility theory approach for estimating available water capacity from imprecise information contained in soil databases. Geoderma, 103(1): 113-132.
Dane JH and Jan WH. 2002. Water retention and storage. In Warren AD (ed.). Methods of soil analysis. Part 4. Physical methods. Soil Science Society of America, Madison, Wisconsin, pp: 671-717.
Davatgar N, Kavoosi M, Alinia MH and Paykan M. 2006. Study of potassiun status and effect of physical and chemical properties of soil on it in paddy soils of GuilanProvince. Journal of Water and Soil Sciences, 9(4): 71-89. (In Persian).
Dexter A, Czyz E, Richard G and Reszkowska A. 2008. A user-friendly water retention function that takes account of the textural and structural pore spaces in soil. Geoderma, 143(3): 243-253.
Durner W. 1994. Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resources Research, 30(2): 211-223.
Fooladmand HR and Hadipour S. 2011. Parametric pedotransfer functions of a simple linear scale model for soil moisture retention curve. African Journal of Agricultural Research, 6(17): 4000-4004.
Fredlund DG and Xing A. 1994. Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31(4): 521-532.
Frigge M, HoaglinDC and Iglewicz B. 1989. Some implementations of the boxplot. The American Statistician, 43(1): 50-54.
Gardner W. 1956, Mathematics of isothermal water conduction in unsaturated soils. Highway Research Board Special Report 40, International Symposium on Physico-Chemical Phenomenon in Soils. WashingtonDC, pp. 78-87.
Gee GW and Or D. 2002. Particle-size and analysis. In: Warren AD (ed.). Methods of soil analysis Part 4. Physical methods. Soil Science Society of America, Madison, Wisconsin, pp: 255-295.
Groenevelt P and Grant CD. 2004. A new model for the soil-water retention curve that solves the problem of residual water contents. European Journal of Soil Science, 55(3): 479-485.
Grossman RB and Reinsch TG. 2002. In: Dane JH, Clarke TG (ed.). Methods of soil analysis Part 4. Physical methods. Soil Science Society of America, Madison, Wisconsin, pp: 211-254.
Hoppner F, Klawonn F, Kruse R and Runkler T. 1999. Evaluation of soil water retention curve with the pore–solid fractal model. Geoderma, (127): 52- 61.
Haverkamp R, Leij FJ, Fuentes C, Sciortino A and Ross P. 2005. Soil Water Retention. Soil Science Society of America Journal, 69(6): 1881-1890.
Jana RB, Mohanty BP and Springer EP. 2007. Multiscale pedotransfer functions for soil water retention. Vadoze Zone Journal, 6(4): 868-878.
Khlosi M, Cornelis WM, Douaik A, van GenuchtenMT and Gabriels D. 2008. Performance evaluation of models that describe the soil water retention curve between saturation and oven dryness. Vadoze Zone Journal, 7(1): 87-96.
Koekkoek E and Booltink H. 1999. Neural network models to predict soil water retention. European Journal of Soil Science, 50(3): 489-495.
Kosugi Ki. 1994. Three-parameter lognormal distribution model for soil water retention. Water Resources Research, 30(4): 891-901.
Manyame C, Morgan C, Heilman J, Fatondji D, Gerard B and Payne W. 2007. Modeling hydraulic properties of sandy soils of Niger using pedotransfer functions. Geoderma, 141(3): 407-415.
Mayr T and Jarvis N. 1999. Pedotransfer functions to estimate soil water retention parameters for a modified Brooks–Corey type model. Geoderma, 91(1): 1-9.
McKee C and Bumb A. 1984. The importance of unsaturated low parameters in designing a hazardous waste site. Hazardous Wastes and Environmental Emergencies Hazardous Materials Control Research Institute National Conference. March 12-14, Houston, Texas, pp: 50-58.
McKee C and Bumb A. 1987. Flow-testing coalbed methane production wells in the presence of water and gas. Society of Petroleum Engineers Formation Evaluation, 2(4): 599-608.
Merdun H, Cınar O, Meral R and Apan M. 2006. Comparison of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity. Soil and Tillage Research, 90(1): 108-116.
Millan H, Gonzalez PM, Morilla AA and Perez E. 2007. Self similar organization of Vertislo microstructure a pore solid fractal interretation. Geoderma, (138): 185-190.
Minasny B, Hopmans J, Harter T, Eching S, Tuli A and Denton M. 2004. Neural networks prediction of soil hydraulic functions for alluvial soils using multistep outflow data. Soil Science Society of America Journal, 68(2): 417-429.
Minasny B and McBratney A. 2002. The method for fitting neural network parametric pedotransfer functions. Soil Science Society of America Journal, 66(2): 352-361.
Nabizadeh E and Beigi Harchegani H. 2011. The Fitting Quality of Several Water Retention Models in Soil Samples from Lordegan, Charmahal-va-Bakhtiari. Journal of Water and Soil, 25(3): 634-645. (In Persian.)
Pachepsky YA,Timlin D and Varallyay G. 1996. Artificial neural networks to estimate soil water retention from easily measurable data. Soil Science Society of America Journal, 60(3): 727-733.
Perrier E, Bird N and Rieu M. 1999. Generalizing the fractal model of soil structure: The pore–solid fractal approach. Geoderma, 88(3): 137-164.
Rawls W and Pachepsky YA. 2002. Soil consistence and structure as predictors of water retention. Soil Science Society of America Journal, 66(4): 1115-1126