تخمین سطح تنش رطوبتی خاک با استفاده از مدل HYRDUS2D و سیستم استنتاج عصبی- فازی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 1- استادیار گروه مهندسی آب، دانشکده ی آب و خاک، دانشگاه زابل (مکاتبه کننده)

2 استادیار گروه مهندسی آب، دانشکده‌ی آب و خاک، دانشگاه زابل

چکیده

در این پژوهش، به­منظور تعیین طول دوره­ی تنش در طول فصل کشت، قابلیت مدل­های HYDRUS2D و ANFIS در
شبیه­سازی روند تغییرات زمانی رطوبت خاک و اجزای بیلان آب تحت آبیاری کامل و کم­آبیاری معمولی در دو سطح 75 (DI75) و 55 درصد (DI55) در یک مزرعه­ی ذرت با یکدیگر مقایسه شدند. بدین منظور، طی دو فصل زراعی داده­های رطوبت خاک با استفاده از رطوبت­سنج TRIME-FM برای واسنجی و صحت­یابی مدل HYDRUS2D برداشت شد. همچنین، شبیه­سازی تغییرات زمانی رطوبت خاک با مدل ANFIS با توابع عضویت مختلف و با متغیرهای مستقل روز بعد از کاشت، ضریب درجه-روز، سطح تنش و عمق آب آّبیاری انجام شد. مقایسه­­ی معیارهای ارزیابیِ جذر میانگین مربعات خطا (mm 2-21/8)، خطای انحراف (mm 6/11-7-10) و ضریب کارآیی مدل (1-63/0) در شبیه­سازیِ طول دوره­­ی تنش، رطوبت و اجزای بیلان خاک، امکان جایگزینی مدل ANFIS با مدل پیچیده­ی HYDRUS2D را در شرایط معرفی متغیرهای مستقل مناسب را نشان می­دهد. هچنین، علی­رغم اعمال زود هنگام­تر تیمارها در فصل دوم، عدم تغییر بازه­ی تنش رطوبتی در تیمار DI75 در دو فصل (از روز 82­ام تا انتهای فصل کاشت)، امکان کاهش سطح آب مصرفی و یا تغییر زمان اعمال کم­آبیاری را نشان می­دهد. بر اساس نتایج این پژوهش، مدل ANFIS می­تواند پاسخگوی نیاز در این راستا باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Estimating the water stress in soil using HYDRUS2D and Adaptive Neuro-Fuzzy Interference System

نویسندگان [English]

  • Fatemeh Karandish 1
  • Parviz Haghighatju 2
1 Assistant Professor, Water Engineering Department, Water and Soil Faculty, University of Zabol, Zabol, Iran
2
چکیده [English]

Most In this research, the ability of HYDRUS2D and ANFIS models for simulating temporal variations of soil water content and soil water balance components under full irrigation and water deficit irrigation with two levels of 75 and 55 percentage in a maize field were compared to determine water stress duration in the growing season. To do so, soil water content was measured using TRIME-FM TDR sensors during two growing seasons for calibrating and validating HYDRUS2D model. Also, soil water content was simulated using ANFIS with different type of membership functions and using independent variables of days after planting, GDD, irrigation depth and water stress level. Comparing root mean square error, mean bias error and model efficiency coefficient indices for simulating soil water content stress period duration, soil water content and soil water balance components demonstrated the possibility of using ANFIS instead of a complicated model such as HYDRUS2D when defining the suitable independent variables. Despite 10 days sooner application of treatments in second growing season, the same water stress duration under DI75 treatment for both growing season (i.e. since 82 DAP till harvest) shows that it is possible to apply treatments either sooner or with higher intensity when applying deficit irrigation. Based on the results, ANFIS model could be used for these purposes.

کلیدواژه‌ها [English]

  • ANFIS
  • Deficit irrigation
  • GDD
  • Soil water content
  • water balance components
References
Ajdary, K., Singh, D.K., Singh, A.K., Khanna, M. (2007). Modeling of nitrogen leaching from experimental onion field under drip fertigation. Agric. Water Manage. 89, 15–28.
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300(9), D05109.
Birchak, J. R., Gardner, C. G., Hipp, J. E., & Victor, J. M. (1974). High dielectric constant microwave probes for sensing soil moisture. Proceedings of the IEEE, 62(1), 93-98.
Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford university press.
Celia, M.A., Bouloutas, E.T., Zarba, R.L. 1990. A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour. Res. 26, 1483–1496.
Cote, C. M., Bristow, K. L., Charlesworth, P. B., Cook, F. J., & Thorburn, P. J. (2003). Analysis of soil wetting and solute transport in subsurface trickle irrigation. Irrigation Science, 22(3-4), 143-156.
Dasberg, S., & Hopmans, J. W. (1992). Time domain reflectometry calibration for uniformly and nonuniformly wetted sandy and clayey loam soils. Soil Science Society of America Journal, 56(5), 1341-1345.
Malamos, N. (2007). Estimation of width and depth of the wetted soil volume under a surface emitter, considering root water-uptake and evaporation. Water resources management, 21(8), 1325-1340.
FAO. (2010). AQUACROP Annexes: Reference Manual, 50p.
Gardenas, A. I., Hopmans, J. W., Hanson, B. R., & Šimůnek, J. (2005). Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation. Agricultural water management, 74(3), 219-242.
GHORBANI, D. S., HOMAEI, M., & Mahdian, M. H. (2009). Estimating soil water infiltration parameters using Artificial Neural Networks.
Gilley, J. R., Watts, D. G., & Sullivan, C. Y. (1980). Management of irrigation agriculture with a limited water and energy supply. Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, 168.
Hupet, F., Lambot, S., Javaux, M., & Vanclooster, M. (2002). On the identification of macroscopic root water uptake parameters from soil water content observations. Water resources research, 38(12).
Besharat, S., Khanmohammadi, N., Rezaie, H., & Behmanesh, J. (2012). Evaluation of soil water profile simulations in drip irrigation based on soil hydraulic properties with experimental observations. In Soil and Water Engineering. International Conference of Agricultural Engineering-CIGR-AgEng 2012: agriculture and engineering for a healthier life, Valencia, Spain, 8-12 July 2012 (pp. C-1035). CIGR-EurAgEng.
Karandish, F., Mirlatifi, SM., Shahnazari, A., Abbasi, F., Gheysari, M. (2012). Effect of partial root-zone drying (PRD) and deficit irrigation on Nitrogen uptake and leaching in maize. Journal of Water and Irrigation Management, 2(2), 85-98.
Karandish, F., Mirlatifi, SM., Shahnazari, A., Abbasi, F., Gheysari, M. (2013). Investigating the influence of partial root-zone drying and defecit irrigation on water productivity, maize yield and yield components. Journal of Water and Soil Researches, 44(1), 33-44.
Karandish F. 2016. Improved soil-plant water dynamics and economic water use efficiency in a maize field under locally water stress. Arch Agronomy Soil Science. 1–13.
Klocke, N. L., Schneekloth, J. P., Melvin, S. R., Clark, R. T., & Payero, J. O. (2004). Field scale limited irrigation scenarios for water policy strategies. Applied engineering in agriculture, 20(5), 623.
Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of hydrology, 10(3), 282-290.
Parchami-Araghi, F., Mirlatifi, S. M., Dashtaki, S. G., & Mahdian, M. H. (2013). Point estimation of soil water infiltration process using Artificial Neural Networks for some calcareous soils. Journal of Hydrology, 481, 35-47.
Payero, J. O., Melvin, S. R., Irmak, S., & Tarkalson, D. (2006). Yield response of corn to deficit irrigation in a semiarid climate. Agricultural Water Management, 84(1), 101-112.
Robins, J. S., & Domingo, C. E. (1953). Some effects of severe soil moisture deficits at specific growth stages in corn. Agronomy Journal, 45(12), 618-621.
Schneekloth JP, Klocke NL, Hergert GW, Martin DL, Clark RT .1991. Crop rotations with full and limited irrigation and dryland management. Trans. ASAE 34: 2372-2380.
Simunek, J., Sejna, M., van Genuchten, M.Th. (1999). The HYDRUS-2D Software Package for Simulating Two-Dimensional Movement of Water, Heat, and Multiple Solutes in Variable Saturated Media. Version 2.0. IGWMCTPS-53, International Ground Water Modeling Center, Colorado School of Mines, Golden, Colorado, pp. 1–251.
Stone, L. R. (2003, February). Crop water use requirements and water use efficiencies. In Proceedings of the 15th annual Central Plains irrigation conference and exposition. February (pp. 4-5).
Tafteh, A., Sepaskhah, A.R. 2012. Application of HYDRUS-1D model for simulating water and nitrate leaching from continuous and alternate furrow irrigated rapeseed and maize fields. Agricultural Water Management, 113: 19– 29.
Vrugt, J. A., Hopmans, J. W., & Simunek, J. (2001). Calibration of a two-dimensional root water uptake model. Soil Science Society of America Journal, 65(4), 1027-1037.
Wang, Z., Li, J., & Li, Y. (2014). Simulation of nitrate leaching under varying drip system uniformities and precipitation patterns during the growing season of maize in the North China Plain. Agricultural Water Management, 142, 19-28.