نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه علوم خاک دانشگاه ولی عصر رفسنجان

2 دانشیار گروه علوم خاک دانشگاه ولی عصر رفسنجان

3 استادیار گروه علوم خاک دانشگاه ولی عصر رفسنجان

4 استاد گروه علوم باغبانی دانشگاه ولی عصر رفسنجان

چکیده

موفقیت در امر گیاه پالایی خاک­های آلوده به فلزات سنگین تا حد زیادی به فراهمی زیستی آن­ها بستگی دارد. برای بررسی برهمکنش سیدروفور DFOB (0، 70 و 140 میکرو مول دسفرواکسامین بر کیلوگرم خاک) و جدایه­های مقاوم به فلزات باکتری سودوموناس (p19, p18, p15, p0) بر تجمع روی در ذرت و تغییرات گونه­بندی شیمیایی آن، نمونه­هایی از یک خاک آلوده به روی به گلدان­های یک کیلوگرمی منتقل شد. گیاهان بعد از 60 روز برداشت شدند. نتایج نشان داد تلقیح باکتریایی گیاهان، غلظت روی در اندام هوایی گیاه را افزایش داد. هم­چنین اضافه نمودن 140 میکرومول سیدروفور بر گیلوگرم خاک به گیاهان تلقیح شده با جدایه p15، غلظت روی در ریشه گیاه را در مقایسه با شاهد به طور معنی‌داری افزایش داد. جذب روی نیز در گیاهان تلقیح شده با جدایه­های باکتریایی به طور معنی‌داری افزایش یافت. با کاربرد سیدروفور غلظت روی قابل استخراج توسط DTPA در خاک افزایش یافت. کاربرد سیدروفور و تلقیح جدایه­های باکتری، غلظت روی پیوند شده با کربنات­ها را به­طور معنی‌داری کاهش و غلظت روی محلول را افزایش داد. براساس نتایج این پژوهش، کاربرد لیگاند سیدروفور به همراه جدایه­های مقاوم باکتریایی می­تواند فراهمی زیستی روی را در خاک افزایش دهد که این موضوع از اهمیت زیادی در گیاه پالایی خاک­های آلوده برخوردار است.

کلیدواژه‌ها

عنوان مقاله [English]

Effects of plant growth promoting rhizobacteria and siderophore on distribution of chemical fractions of Zn in soil and its uptake by corn

نویسندگان [English]

  • Hamideh Nemati 1
  • Mohsen hamid pur 2
  • Peyman Abbaszadeh 3
  • Hamid Reza Rosta 4

1 M.Sc. Student, Department of Soil Science, University of Vali Asr Rafsanjan

2 Associate Professor, Department of Soil Science, University of Vali Asr Rafsanjan

3 Associate Professor, Department of Soil Science, University of Vali Asr Rafsanjan

4 Professor, Department of Horticulture, University of Vali Asr Rafsanjan

چکیده [English]

Successful phytoremediation of metal-contaminated soils largely depends on their bioavailability in soil. Samples of a contaminated soil with elevated concentration of Zn were applied in the pots to evaluate the interactive effects of DFOB siderophore (0, 70 and 140 μM kg−1) and metal tolerant bacterial inoculation (p0, p15, p18, and p19) on Zn accumulation in corn and metal speciation and sequential fractions in soil. Results indicated that bacterial inoculation increased Zn concentrations in corn shoot. Addition of DFOB (140 μM kg−1) to pots of the soil which was inoculated with p15 isolate significantly enhanced Zn concentration in roots as compared to control. The uptake of Zn by shoots was increased in pots inoculated by bacterial isolates compared to those in the un-amended soils. Ligand addition significantly enhanced the concentration of DTPA-extractable Zn. Also co-application of DFOB and bacterial inoculation significantly decreased Zn bound to carbonates fraction and increased water soluble Zn concentration. Based on the results of this study, it can be concluded that co-application of DFOB and metal tolerant bacteria are efficient in increasing the bioavailability of Zn when expressed relative to the control treatment, which might be of great significance for the successful phyto-extraction of Zn-polluted soils.

کلیدواژه‌ها [English]

  • Soil pollution
  • Heavy metals
  • phytoremediation
  • Siderophore
Abbaspour, A., and Golchin, A. (2011). Immobilization of heavy metals in a contaminated soil in Iran using di-ammonium phosphate, vermicompost and zeolite. Environmental Earth Sciences, 63, 935–943.
Abbaszadeh-Dahaji, P., Saleh-Rastin, N., Asadi-Rhmani, H., Khvazi, K., Soltani, A. A., Shoary-Nejati, A. R. and Miransari, M. (2010). Plant growth-promoting activities of fluorescent pseudomonads isolated from Iranian soils. Acta Physiologiae Plantarum, 32, 281-288.
Alloway, B. J. and Jackson, A. P. (1991). The behavior of heavy metals in sewage sludge amended soils. Science of the Total Environment, 100, 151-176.
Bar-Ness, E., Hadar, Y., Chen, Y., Shanzer, A. and Libman, J. (1992). Iron uptake by plants from microbial siderophores: A study with 7-Nitrobenz-2 Oxa-1,3-Diazole-Desferrioxamine as fluorescent ferrioxamine B analog. Plant Physiology, 99, 1329-1335.
Cervini-silva, J., Kearns, J. and Banfield, J. (2012). Steady-state dissolution kinetics of mineral ferric phosphate in the presence of desferrioxamine-B and oxalate ligands at pH= 4-6 and T= 24 ± 0.6ºC. Chemical Geology, (320-321), 1-8
Chapman, H. D. (1965). Cation exchange capacity. In: Black CA. (Ed.). Methods of Soil Analysis. Part 2. American Society of Agronomy, Madison, Wisconsin, pp. 891-900.
Chelliah, E. R., Sundaresan, S. and Govindan, S. S. (2008). Adaptive and cross resistance to Cadmium (II) and Zinc (II) by Pseudomonas aeruginosa BC15. Biologia, 63(4), 461-465
Cline, G. R., Reid, C. P., Powell, P. E. and Szaniszlo, P. J. (1984). Effects of a hydroxamate siderophore on iron absorption by sunflower and-sorghum. Plant Physiology, 76, 36-39.
Dell Amico, E., Cavalca, L. and Andreoni, V. (2008). Improvement of Brassica napus growth under cadmium stress by cadmium resistant rhizobacteria. Soil Biology and Biochemistry, 40, 74-84.
Demir, S. (2004). Influence of arbuscular mycorrhiza on some physiological growth parameters of pepper. Turkish Journal of Biology, 28, 85-90
Gavrilescu, M. (2004). Removal of heavy metals from the environment by biosorption. Engineering in Life Sciences, 3, 219-232.
Glick, B. R., Jacobson, C. B., Schwarze, M. M. and Pasternak, J. J. (1994). 1-amino cyclopropane-1-carboxylic acid deaminase mutants of the plant-growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation. Canadian Journal of Microbiology, 40, 911-915.
Glick, B. R. (2003). Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnology Advances, 21: 383–393.
Gohre, V. and Paszkowski, U. (2006). Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta, 223, 1115-1122.
Haag-Kerwer, A., Schafer, H. J., Heiss, S., Walter, C. and Rausch, T. (1999). Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. Journal of Experimental Botany, 50, 1827–1835.
Hamidpour, M., Shirani, H. and Akhgar, A. (2012). Adsorption of Cd on montmorillonite in the presence of desferal siderophore. Journal of Water and Soil, 26, 42-52, (In Persian).
Jarak, M., Mrkovacki, N., Bjelic, D., Josic, D., Hajnal-Jafari, T. and Stamenov, D. (2012). Effects of plant growth promoting rhizobacteria on maize in greenhouse and field trial. African Journal of Microbiology, 6, 5683-5690.
Jiang, C. Y., Sheng, X. F., Qien, M. and Wang, Q. Y. (2008). Isolation and characterization of a heavy metal resistant Burkholderia sp. from heavy metal contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal polluted soil. Chemosphere, 72, 157-164.
Karimzadeh, L. Nai,r S. and Merkel, B. J. (2012). Effect of microbial siderophore DFO-B on Cd accumulation by Thlaspi caerulescens hyperaccumulator in the presence of zeolite. Chemosphere, 88, 683-6877.
Kloepper, J. W., Lifshitz R. R. and Zablotwicz, R. M. (1989). Free-living bacterial inocula for enhancing crop productivity. Trends in Biotechnology, 7, 39-43.
Li, J. T., Liao, B., Lan, C. Y., Ye, Z. H., Baker, A. J. and Shu, W. S. (2010). Cadmium tolerance and accumulation in cultivars of a high-biomass tropical tree (Averrhoa carambola) and its potential for phytoextraction. Journal of Environmental Quality, 39, 1262–1268.
Lim, J. H., An, C. H., Kim, Y. H., Jung, B. K., and Kim, S. D. (2012). Isolation of auxin- and 1-aminocyclopropane-1-carboxylic acid deaminase-producing bacterium and its effect on pepper growth under saline stress. Journal of the Korean Society for Applied Biological Chemistry. 55(5), 607−612
Lindsay, W. L. and Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42, 421-428.
Liu, Z., Ge, H., Li, C., Zhao, Z., Song, F. and Hu, S. (2015). Enhanced phytoextraction of heavy metals from contaminated soil by plant co-cropping associated with PGPR. Water, Air and Soil Pollution, 226, 29-38.
Long, X. X., Chen, X. M., Chen, Y. G., Wong, J. W., Wei, Z. B. and Wu, Q. T. (2010). Isolation and characterization endophytic bacteria from Sedum alfredii Hance and their potential to promote phytoextraction of zinc polluted soil. World Journal Microbiology Biotechnology, 27, 1197-1207.
Ma, Y., Rajkumar, M., Luo, Y. and Freitas, H. (2013). Phytoextraction of heavy metal polluted soils using Sedum plumbizicicola inoculated with metal mobilizing Phyllobacterium myrsinacearum RC6b. Chemosphere, 93, 1386-1392.
Mehnaz, S., Kowalik, T., Reynold, B. and Lazarovits, G. (2010). Growth promoting effects of corn (Zea mays) bacterial isolates under greenhouse and field conditions. Soil Biology and Biochemistry, 42, 1848-1856.
Mishra, B., Haack, E.A., Maurice, P. A. and Bunker, B. A. (2010). A spectroscopic study of the effects of a microbial siderophore on Pb adsorption to kaolinite. Chemical Geology, 275, 199-207.
Neubauer, U., Furrer, G. and Schulin, R. (2002). Heavy metal sorption on soil minerals affected by the siderophore desferrioxamine B: the role of Fe(III) (hydr) oxides and dissolved Fe(III). European Journal of Soil Science, 53, 45-55.
Norvell, W.A. (1991). Reactions of metal chelates in soils and nutrient solutions. In: Mortvedt JJ, Cox FR., Shuman LM. and Welch RM. (Eds.), Micronutrients in Agriculture. Soil Science Society of America, Madison, Wisconsin, pp. 187–227.
Prapagdee, B., Chanprasert, M. and Mongkolsuk, S. (2013). Bioaugmentation with cadmium-resistant plant growth promoting rhizobactria to assist cadmium phytoextraction by Helianthus annuus. Chemosphere, 92(6), 659-666.
Richards, L.A. (1954). Diagnosis and Improvement of Saline and Alkali Soils. U.S.D.A. Handbook, 60. Washington, DC, USA, 162 p.
Salbu, B., Krekling, T. and Oughton, D. H. (1998). Characterization of radioactive particles in the environment. Analyst, 123, 843-849
Salehzade, H., Shishvan, M.I., Ghiyasi, M., Forouzin, F. and Siyahjani, A.A. (2009). Effect of seed priming on germination and seedling growth of wheat (Triticum aestivum L.). Research Journal of Biological Science, 4, 629-631.
Shaharoona, B., Arshad, M., Zahir, A. Z. and Khalid, A. (2006). Performance of Pseudomonas spp. containing ACC deaminase for improving growth and yield of maize in the presence of nitrogenous fertilizer. Journal of Soil Biology and Biochemistry, 38, 2971–2975.
Sheng, X. F., and Xia, J. J. (2006). Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere, 64, 1036–1042.
Sparks, D. L. (2003). Environmental soil chemistry. Academic Press, San Diego, CA, 352 p.
Sun, Y., Zhou, Q., Xu, Y., Wang, L., and Liang, X. (2011). The role of EDTA on cadmium phytoextraction in a cadmium-hyperaccumulator Rorippa globsa. Environmental Toxicology and Chemistry, 3, 45-51.
Vithanage, M., Dabrowska, B.B., Mukherjee, B., Sandhi, A. and Bhattacharya, P. (2012). Arsenic uptake by plants and possible phytoremediation applications: a brief overview. Environmental Chemistry Letters Impact, 10, 217–224.
Walky, A., and Black, T.A. (1934). An examination of the Degtjareff method for determining organic matter and a proposed modification of chromic acid titration method. Soil Science, 37, 29-38.
Zafar, M., Rahim, N., Shaheen, A., Khaliq, A., Arjam T., Jamil, M., Rehman, Z.U. and Sultan, T. (2011). Effect of combining poultry manure, inorganic phosphate solubilizing bacteria on growth, yield, protein content and uptake in maize. Advances in Agriculture and Botanics-International Journal of the Bioflux Society, 3, 46-58.