References
Audet P., and Charest C. 2006. Effects of AM colonization on ‘wild tobacco’ grown in zinc contaminated soil. Mycorrhiza, 16: 277-283.
Bradford M.M. 1976. A rapid sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.
Bressano M., Curetti M., Giachero L., Gil S.V., Cabello M., March G., Ducasse D.A., and Luna C.M. 2010. Mycorrhizal fungi symbiosis as a strategy against oxidative stress in soybean plants. Journal of Plant Physiology, 167(18): 1622- 1626.
Cottenie A. 1980. Methods of Plant Analysis. In: Soil and Plant Testing. FAO Soils Bulletin, NO 38/2, pp. 94-100.
Feddermann N., Roger F., Boller T., and Elfstrand M. 2010. Functional diversity in arbuscular mycorrhiza – the role of gene expression, phosphorous nutrition and symbiotic efficiency. Fungal Ecology, 3: 1-8.
Ferreira A.S., Totola M.R., Kasuya M.C.M., Araujo E.F., and Borges A.C. 2005. Small heat shock proteins in the development of thermotolerance in Pisolithu ssp. Journal of Thermal Biology, 30: 595–602.
Gadkar V., and Rillig M.C. 2006. The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60. FEMS Microbiology Letters, 263: 93-101.
Gaur A., and Adholeya A. 2004. Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Current Science, 86: 528-534.
Gohre V., and Paszkowski U. 2006. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta, 223: 1115–1122.
Gonzalez-Chavez M.C., Carrillo-Gonzalez R., Wright S.F., and Nichols K.A. 2004. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution, 130: 317-323.
Hammer E.C., and Rillig M.C. 2011. The Influence of different stresses on glomalin levels in an arbuscular mycorrhizal fungus- salinity increases glomalin content. PLoS One, 6(12): 1-5.
Janouskova M., Pavlikova D., Macek T., and Vosatka M. 2005. Arbuscular mycorrhiza decreases cadmium phytoextraction by transgenic tobacco with inserted metallothionein. Plant and Soil, 272: 29–40.
Jansa J. Finlay R., Wallander H., Smith F., and Smith E. 2011. Role of mycorrhizal symbioses in phosphorus cycling. Soil Biology, 100: 137-168.
Kabata-Pendias A. 2011. Trace Elements in Soils and Plants, 4td edition. CRC Press/Taylor and Francis, Boca Raton, USA, 548p.
Kormanik P.P., and McGraw A.C. 1982. Quantification of vesicular-arbuscular mycorrhizae in plant roots. In: Schenck, N.C. (Eds.), Methods and Principles of Mycorrhizal Research. American Phytopathological Society, Saint Paul, MN, pp. 37-45.
Liang C., Li T., Xiao Y., and Liu M. 2009. Effects of inoculation with arbuscular mycorrhizal fungi on maize grown in multi-metal contaminated soils. International Journal of Phytoremediation, 11: 692-703.
Lombi E., Wenzel W.W., Gobran G.R., and Adriano D.C. 2001. Dependency of metals on indigenous and induced rhizosphere processes: A review. In: Gobran G.R., Wenzel W.W., and Lombi E. (Eds.), Trace Elements in the Rhizopshere. CRC Press, Boca Raton, Florida, pp, 3-24.
Malekzadeh E., Aliasgharzad N., Majidi J., Abdolalizadeh J., and Aghebati-Maleki L. 2016. Contribution of glomalin to Pb sequestration by arbuscular mycorrhizal fungus in a sand culture system with clover plant. European Journal of Soil Biology, 74: 45-51.
Millner P.D., and Kitt D.G. 1992. The Beltsville method for soilless production of vesicular arbuscular mycorrhizal fungi. Mycorrhiza, 2: 9-15.
Mulligan C.N., Yong R.N., and Gibbs B.F. 2001. Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering Geology, 60: 193–207.
Nichols K.A., and Wright S.F. 2005. Comparison of glomalin and humic acid in eight native United State soils. Soil Science, 170: 985-997.
Pawlowska T.E., and Charvat I. 2004. Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi. Applied and Environmental Microbiology, 70: 6643-6649.
Purin S., and Rillig M.C. 2007. The arbuscular mycorrhizal fungal protein glomalin: Limitations, progress, and a new hypothesis for its function. Pedobiologia, 51: 123-130.
Rillig M.C., and Steinberg P.D. 2002. Glomalin production by an arbuscular mycorrhizal fungus, a mechanism of habitat modification? Soil Biology and Biochemistry, 34: 1371-1374.
Rosier C.L., Hoye A.T., and Rillig M.C. 2006. Glomalin-related soil protein: Assessment of current detection and qualification tools. Soil Biology and Biochemistry, 38: 2205-2211.
Shevyakova N.I., Il'ina E.N., and Kuznetsov V.V. 2008. Polyamines increase plant potential for phytoremediation of soils polluted with heavy metals. Doklady Biological Sciences, 423: 457–460.
Soleimani M., Akbar S., and Hajabbasi M.A. 2011. Enhancing Phytoremediation Efficiency in Response to Environmetal Pollution Stress. In: Vasanthaiah, H.K.N., and Kambiranda, D.M. (Eds.), Plants and Environment. In Tech-Open Access Publisher, pp, 1-14.
Vaidya G.S., Rillig M.C and Wallander H. 2011. The role of glomalin in soil erosion. Scientific World, 9(9): 82-85.
Waling I., Vark W.V., Houba V.J.G., and Vanderlee J.J. 1989. Soil and plant analysis, a series of syllabi: Part7- Plant Analysis Procedures. Wageningen Agricultural University, Netherlands.
Wang F.Y., Lin X.G., and Yin R. 2007. Inoculation with arbuscular mycorrhizal fungus Acaulospora mellea decrease Cu phytoextraction by maize from Cu-contaminated soil. Pedobiologia, 51: 99-109.
Wang Z.H., Yuan K., and Yang L. 2013. Response of maize leaf proteins induced/modulated by AM mycorrhizal inoculation and (or) arsenic stress. China Agriculture Science, 46(18): 3758-3767.
Wright S.F., Franke-Snyder M., Morton J.B., and Upadhyaya A. 1996. Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant and Soil, 181: 193-203.