ارزیابی تأثیر پیش پردازش پارامترهای ورودی حاصل از تصاویر ماهواره ای به شبکه عصبی مصنوعی در تعیین بافت خاک

نوع مقاله : مقاله پژوهشی

نویسنده

دانشگاه شهید مدنی آذربایجان

چکیده

تعیین خصوصیات خاک از جمله بافت خاک از ابزار مهم برای مدیریت مناسب، استفاده بهینه و پایدار خاک است. هدف این مطالعه تعیین بافت خاک، میانگین هندسی و انحراف معیار اندازه ذرات خاک با استفاده از تصاویر سنجنده MODIS در دوره-های زمانی تصویر‌برداری 2015 و 2016 می‌باشد. بعد از تعیین بافت خاک به روش هیدرومتری از شبکه عصبی مصنوعی برای مدلسازی بافت خاک، میانگین هندسی و انحراف معیار اندازه ذرات خاک با باندهای انعکاسی، حرارتی و شاخص‌های تصاویر ماهواره‌ای استفاده شد. از مراحل مهم در مدلسازی، پیش‌پردازش پارامترهای ورودی جهت انتخاب ترکیبی مناسب از آنها است. در این تحقیق پیش‌پردازش پارامترهای ورودی براساس سه روش معنی‌داری ضریب همبستگی، استفاده از تعداد معین پارامترهای ورودی و رگرسیون گام به گام انجام شد. روش رگرسیون گام به گام از کمترین خطا برخوردار بود به‌طوری-که درصد کاهش RMSE، به ترتیب نسبت به روش معنی‌داری ضریب همبستگی و استفاده از تعداد معین پارامترهای ورودی در تعیین درصد رس 22 و 6/18، در تعیین درصد شن 19/43 و 23/71، در تعیین میانگین هندسی 14/80 و 29/27 و در تعیین انحراف معیار 27/21 و 81/37 بود. همچنین درصد کاهش RMSE نسبت به روش استفاده از تعداد معین پارامترهای ورودی در تعیین درصد سیلت، 13/51 بود.کمینه مقدار متوسط آماره‌های RMSE، MAE و MRE برای سه روش پیش-پردازش مربوط به ذرات شن است که به‌عنوان نمونه متوسط MAE در مورد رس 74/1، شن 2/1 و سیلت 66/1 بود. کاهش 77/27 درصد RMSE در تعیین درصد شن با روش شبکه عصبی به عنوان نمونه گویای بهبود عملکرد مدلسازی با شبکه عصبی مصنوعی نسبت به روش رگرسیون کلاسیک است. به‌طور کلی نوع پارامترهای ورودی و نوع روش مدلسازی از عوامل مهم در تعیین بافت خاک می‌باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation the Preprocessing Effect of Satellite Images Input Parameters in to Artificial Neural Network for soil texture determination

چکیده [English]

Soil properties determination such as soil texture is an important tool for proper management, optimized and sustainable use of soil. The aim of this research is determination the soil texture, geometric mean and standard deviation of soil particles using images of MODIS sensor in the period of 2015-2016. After soil texture determination using hydrometer method, artificial neural network model have been used for soil properties determination using reflectance, thermal bands and indices of satellite images. The preprocessing is one the most important parts in the modeling process. In this research, the preprocessing of input parameters was based on the significance of correlation coefficient, using the constant number of input parameters and stepwise regression. Stepwise regression method has the minimum error which the RMSE decreasing rather to the significance correlation and constant input parameter methods for clay content determination was 22 and 18.6 percent, for sand determination 43.19 and 71.23 percent, for geometric mean determination 80.14 and 27.29 percent, for standard devotion determination 21.17 and 38.71 percent. Also, in the case of silt calculation, the RMSE decreasing rather to the constant input parameter method was 55.13 percent. The minimum of average criteria; RMSE, MAE and MRE for three different preprocessing methods was related to the sand particle, for example the average of MAE for clay, sand and silt was 1.74, 1,2 and 1,66 respectively. RMSE decreasing of sand, 27.77, using artificial neural networks indicted the better performance of method relative to the classical regression. Generally, the kind of input parameters and kind of modeling is important factors in the soil texture determination.

کلیدواژه‌ها [English]

  • Soil Texture Modeling
  • Input Parameters
  • Reflectance Bands
  • Stepwise Regression
References
 
Abbaspour-Gilandeh Y., Alimardani R., Khalilian A., Keyhani A., and Sadati H. 2008. Prediction of draft force and tillage energy of subsoiling operation using ANN model. The 5th National Congress on Biosystem Engineering and Mechanization, 1-13.
Abdalla N.I., Karamalla Gaiballa A., Ksch C., Sulieman M., and Mariod A. 2015. Using MODIS- derived NDVI and SAVI to distinguish between different rangeland sites according to soil types in semi-arid areas of Sudan (North Kordofan State). International Journal of Life Science and Engineering, 1(4): 150-164.
Ahmed Z., and Iqbal J. 2014.  Evaluation of Landsat TM5 multispectral data for automated mapping of surface soil texture and organic matter in GIS. European Journal of Remote Sensing, 47:557-573.
Alizadeh R. 1993. Remote sensing (principles and applications), Samt Press, pp.310.
Chang D.H., and Islam S. 2000. Estimation of soil physical properties using remote sensing and artificial neural network. Remote Sensing of Environment, 74(3): 534-544.
Chang D.H., Kothari R., and Islam S.2003.Classification of soil texture using remotely sensed brightness temperature over the Southern Great Plains. IEEE Transactions on Geoscience and Remote Sensing, 41(3): 664 - 674.
Ebrahimi Z., Vali A., Ghazavi R., and Haghparast H. 2012. Investigation of soil texture particles and geometric mean particle diameter effects on soil surface of spectral reflectance (case study: Yazd). Journal of Quantities Geomorphology Researches, 3: 115-128.
Ghabaei-Sough M., Mosaedi A., Hesam M., and Hezarjaribi A. 2010. Evaluation effect of input parameters preprocessing in artificial neural networks (Anns) by using stepwise regression and gamma test techniques for fast estimation of daily evapotranspiration. Journal of Water and Soil (Agricultural Sciences and Technology), 24(3): 610-624. (In persion)
Karamouz M., and Araghinejad S. 2005. Advanced hydrology. Amirkabir University of Technology, Tehran Polytechnic Press, 465p.
Kouchakzadeh M., and Bahmani B.2005. Assessment of artificial neural networks revenue in reducing required parameters for estimation of reference evapotranspiration. Journal of Agricultural Sciences, 11(4): 87-97.
Liao K., Shaohui X.U., Jichun W.U., and Zhu Q. 2013. Spatial estimation of surface soil texture using remote sensing data. Soil Science and Plant Nutrition, 59: 488–500.
McBratney A.B., Santos M.L., and Minasny B. 2003. On digital soil mapping. Geoderma, 117: 3-52.
Price J.C. 1984. Land surface temperature measurements from the split window channel of the NOAA 7 advanced very high resolution radiometer. Journal of Geophysical Research, 89: 7231–7237.
Shahabfara A., Ghulamb A., and Eitzinger J. 2012. Drought monitoring in Iran using the perpendicular drought indices. International Journal of Applied Earth Observation and Geoinformation, 18: 119–127.
Shirazi M., and Boersma A. 1984. A unifying quantitative analysis and soil texture. Soil Science Society of America Journal, 48: 142-147.
Shirazi M., Matinfar M., Nematolahi M.J., and Zehtabiyan G.R. 2011.Comparison of information content of aster and LISS-III Bands in Arid Areas (Case study: Damghan Playa). Journal of Applied RS and GIS Techniques in Natural Resource Science, 1(1): 31-49.
Wang D.C., Zhang G.L., Zhao M.S., Pan X.Z., Zhao Y.G., Li D.C., and Macmillan B. 2015. Retrieval and mapping of soil texture based on land surface diurnal temperature range data from MODIS, PLoS ONE, 10(6): e0129977.
Waters R., Allen R., Tasumi M., Trezza R., and Bastiaanssen W. 2002. SEBAL surface energy balance algorithms for land, Idaho Implementation. Advanced Training and User’s Manual (NDVI).
Ziaee D., and Khajedin S.J. 2013. Mapping of soil texture and saturated soil surface moisture using remote sensing (Case study: Esfahan). Iranian Journal of Range and Desert Research, 20(4): 795-808.