Alameda D., Anten N.P.R., and Villar R. 2012. Soil compaction effects on growth and root traits of tobacco depend on light, water regime and mechanical stress. Soil and Tillage Research, 120: 121-129.
Barzegar A.R., Mahmoodi Sh., Hamedi F., and Abdolvahabi F. 2005. Long term sugarcane cultivation effects on physical properties of fine textured soils. Journal of Agricultural Science and Technology, 7: 59-68. (In Persian).
Blackburn F. 1984. Sugar-cane. Longman, New York, ISBN: 0-582-46028-X, 414 p.
Camargo L.A., Marques Junior J., and Pereira G.T. 2010. Spatial variability of physical attributes of an Alfisol under different hill slope curvatures. Brazilian Journal of Soil Science, 34: 617- 630.
Cheong L.R.N., Kwong K.F.K., and Preez C.C.D. 2009. Soil compaction under sugar cane (Saccharumhybrid sp.) cropping and mechanization in Mauritius, South African Journal of Plant and Soil, 26: 199-205.
Dwyer L.M., Stewart D.W., and Balchin D. 1988. Rooting characteristics of corn, soybean and barley as a function of available water and soil physical characteristics. Canadian Journal of Soil Science, 68: 121-132.
Gee G.W., and Bauder J.W. 1986. Particle-size analysis. In: Klute, A. (Ed.), Methods of Soil Analysis 1: Physical and Mineralogical Methods, 2nd Ed. American Society of Agronomy, Madison, pp. 383-411.
Håkansson I., and Lipiec J. 2000. A review of the usefulness of relative bulk density values in studies of soil structure and compaction. Soil and Tillage Research, 53: 71-85.
Humbert R.P. 1968. The Growing of Sugarcane. Elsevier: Amsterdam.
Hunsigi G. 2001. Sugarcane in Agriculture and Industry. Prism Books, Bangalore, India.
Jones C.A. 1983. Effect of soil texture on critical bulk densities for root growth. Soil Science Society of America Journal, 47: 1208-1211.
Klute A. 1986. Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. 2nd Ed. SSSA/ASA Monograph, Madison, WI, 1188 pp.
Laboski C.A.M., Dowdy R.H., Allmars R.R., and Lamb J.A. 1998. Soil strength and water content influences on corn root distribution in a sandy soil. Plant and Soil, 203: 239-247.
Loeppert R.H., and Suarez D.L. 1996. Carbonate and gypsum. In: Sparks, D.L. (Ed.). Methods of Soil Analysis. SSSA Madison. pp. 437-474.
Lorzadeh Sh., Nadian H., Bbakhshandeh A.B., Nourmohamadi Gh., And Darvish F. 2002. Effects of different levels of soil compaction on yield, yield components and sucrose in sugarcane cv. CP48-103, in Khuzestan, Iran. Iranian Journal of Crop Sciences, 4: 36-47. (In Persian).
Meade G.P., and Chen J.C.F. 1977. Cane sugar handbook. John Wiley and Sons, NY.
Nadian H., Smith S.E., Alston A.M. and Murray R.S. 1996. The effect of compaction on growth and P uptake by Trifolium subterraneum: Interactions with mycorrhizal colonisation. Plant and Soil, 182: 39-49.
Nelson D.W., and Sommers L.E. 1996. Total carbon organic carbon and organic matter. In: Sparks, D.L. (Ed.). Methods of Soil Analysis part 3 Chemical Methods. Soil Science Society of America: Madison WI SSSA Book Serie. pp. 153-188.
Nguyen D.T.N., Suralta R.R., Nakata M.K., Mitsuya S., Stella Owusu-Nketia S., and Yamauchi A. 2018. Genotypic variations in the plasticity of nodal root penetration through the hardpan during soil moisture fluctuations among four rice varieties. Plant Production Science, 21: 93-105.
Otto R., Silva A.P., Franco H.C.J., Oliveira E.C.A., and Trivelin P.C.O. 2011. High soil penetration resistance reduces sugarcane root system development. Soil Tillage Research, 117: 201-210.
Pankhurst C.E., Magarey R.C., Sirling G.R., Blair B.L., Bell M.J., and Garside A.L. 2003. Management practices to improve soil health and reduce the effects of detrimental soil biota associated with yield decline of sugarcane in Queensland, Australia. Soil Tillage Research, 72: 125-137.
Reichert J.M., Eduardo L., Suzuki A.S., Reinert D.J., Horn R., and Håkansson I. 2009. Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil Tillage Research, 102: 242-254.
Reichert J.M., Suzuki L.E.A., and Reinert D.J. 2007. Soil compaction in agricultural and forestry systems: identification, effects, critical limits and mitigation. Topics in Soil Science, 5: 49–134.
Rhoades J. 1986. Salinity: electrical conductivity and total dissolved solids. In: Sparks, D.L. (Ed.). Methods of soil Analysis. Part 3: Chemial Properties. Soil Science Society of America. Madison Wisconsin. pp. 417- 435.
Rice E.R., and Hebert L.P. 1972. Sugarcane variety tests in Florida during the 1971-72 season. USDA Agr. Res. Ser. S-2.
Smith D.M., Inman-Bamber N.G., and Thorburn P.J. 2005. Growth and function of the sugarcane. Root system. Field Crops Research, 92: 169-184.
Souza G.S., Souza Z.M., Barboza R.S., Sobreira, R.B., and Silva F.A. 2014. Effects of traffic control on the soil physical quality and the cultivation of sugarcane. Brazilian Journal of Soil Science, 8: 135–146.
Tekeste M.Z., Raper R. and Schwab., E. 2008. Soil Drying Effects on Soil Strength and Depth of Hardpan Layers as Determined from Cone Index Data. Agri. Engin. Int: CIGR E. J. Manuscript LW 07 010. Vol. X.
Thomas G.W. 1996. Soil pH and soil acidity. In: Sparks, D.L. (Ed.). Methods of Soil Analysis. SSSA Madison. pp. 475-490.
Torres J.L.R., Pereira M.G., Cunha M.A., Martins M.E., and Vieira D.M.S. 2013. Physicochemical properties of soil and biomass in sugarcane harvesting systems. Agricultural Science Magazine, 56: 311-318.
Torres J.S., and Villegas F. 1992. Differentiation of soil compaction and cane stool damage. Sugarcane, 1:7-11.
United State Salinity Laboratory Staff. 1954. Diagnosis and improvement of saline and alkali soils. USDA Handbook. 60. Washington, DC.
Vischi Filho O.J., Souza Z.M., Souza G.S., Silva R.B., Torres J.L.R., Lima M.E., and Tavares R.L.M. 2017. Physical attributes and limiting water range as soil quality indicators after mechanical harvesting of sugarcane. Australian Journal of Crop Science, 11: 169-176.
Wood K. 1985. Compaction of soil by agriculture equipment. Soil Use and Management, 1: 120-124.