ارزیابی کارایی تابع مفصل در تخمین برخی از ویژگی‌های خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان

2 هیات علمی دانشگاه شهید باهنر کرمان

3 استاد دانشگاه شهید باهنر کرمان

4 شهید باهنر کرمان

چکیده

مطالعه پراکنش مکانی ویژگی‌های خاک با هدف تهیه نقشه پهنه‌بندی آن در جهت مدیریت خاک و برنامه‌ریزی صحیح به منظور بهره‌برداری مناسب از منابع تجدید ناپذیر خاک، از اهمیت ویژه‌ای برخوردار است. تابع مفصل، از تکنیک‌های درون‌یابی جدیدی است که امروزه در علوم مختلفی کاربرد وسیعی پیدا کرده است. در پژوهش حاضر سعی شده است تغییرات مکانی برخی از ویژگی‌های خاک با استفاده از تابع مفصل مورد ارزیابی قرار گیرد و نتایج حاصل از آن با تکنیک‌های زمین‌آماری مختلف مقایسه گردد. بدین منظور 121 نمونه‌ سطحی خاک به روش شبکه‌بندی منظم از یک منطقه 484 هکتاری از غرب شهرستان بافت استان کرمان جمع‌آوری شد و برخی از ویژگی‌های خاک شامل ماده آلی و بافت خاک اندازه‌گیری شد. برای درون­یابی از چهار تابع مفصل ارشمیدسی شامل؛ توابع کلایتون، فرانک، گامبل و جو و تکنیک­های زمین‌آماری شامل کریجینگ ساده، کریجینگ معمولی، کریجینگ شاخص و کریجینگ منفصل یا گسسته و روش وزن­دهی عکس فاصله (IDW) استفاده شد. تحلیل نتایج با استفاده از شاخص‌های آماری RMSE،R2 ، MAE و MBE صورت گرفت. به منظور برازش تابع مفصل بر داده‌ها، ابتدا تابع توزیع متغیرهای مورد مطالعه تعیین گردید. نتایج نشان داد توزیع هر یک از متغیرهای مورد مطالعه با هم تفاوت دارد و توسط توابع توزیع متفاوتی تشریح می­شود. همچنین با افزایش فاصله مقدار همبستگی برای همه متغیرهای مورد مطالعه کاهش پیدا می­کند به طوریکه بعد از فاصله 2000 متری، هیچ همبستگی مکانی نشان نمی­دهند. مقایسه روش تابع مفصل و تکنیک‌های زمین‌آماری براساس معیارهای ارزیابی نشان داد تابع مفصل در تخمین متغیرهای مورد مطالعه بهتر عمل کرده و مقادیر خطای حاصل از تخمین برای تابع مفصل کمتر محاسبه شد. به طور کلی نتایج این پژوهش نشان داد با توجه به ماهیت چولگی داده­های خاک تکنیک­های تخمینگر توابع مفصل توانایی بیانی کامل از وابستگى احتمالاتى را دارند و می­توانند در مطالعات مکانی مورد توجه قرار گیرند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the Performance of Copula Function in Estimating Some Soil Properties

نویسندگان [English]

  • Ehsan Ghojehpour 1
  • Azam Jafari 2
  • Vahid Reza Jalali 3
  • Majid Mahmoudabadi 4
1 Department of Soil Science, Faculty of Agriculture, Shahid Bahonar University of Kerman,
2 Department of Soil Science, Faculty of Agriculture, Shahid Bahonar University of Kerman
3 Department of Soil Science, Faculty of Agriculture, Shahid Bahonar University of Kerman,
4 Department of Soil Science, Faculty of Agriculture, Shahid Bahonar University of Kerman,
چکیده [English]

The study of spatial distribution of soil properties for optimal soil management and proper utilization of non-renewable soil resources is of particular importance. The copula function is one of the new interpolation techniques that are widely used in various sciences such as hydrology. Thus, the aim of this study was to evaluate the spatial variation of some soil properties using the copula function and to compare with geostatistics techniques. Sampling by regular networking was done in a 484 ha area in the west of Baft city, Kerman province, and 121 surface soil samples were collected. After air drying and passing through a 2 mm sieve, the percentage of organic matter and clay were determined in soil samples. To interpolate, four functions of the Archimedean copula including the Clayton, Frank, Gumbel and Joe functions, and geostatistics techniques including simple kriging, ordinary kriging, universal kriging and disjunctive Kriging and the Inverse Distance Weighting (IDW) method were used. The results were analyzed using Root Mean Square Error (RMSE), determination coefficient (R2), mean absolute error (MAE), and Mean Bias error (MBE). In order to fit the copula function on the data, the distribution function of the studied variables was determined. The results showed that the distribution of each of the studied variables is different and is explained by different distribution functions. Also, with increasing distance, the value of correlation for all studied variables decreased so that after a distance of 2000 meters, they do not show any spatial correlation. Comparison of the Copula function and geostatistical techniques based on evaluation criteria showed that the Copula function had a better performance in estimating the studied variables and the estimation error for the Copula function were calculated less. In general, the results of this study showed that due to the skewed nature of soil data, Copula function have the ability to fully express the probabilistic dependence and can be considered in spatial studies.

کلیدواژه‌ها [English]

  • Copula function
  • Interpolation techniques
  • Spatial correlation
  • Estimation
Aas K., Czado C., Frigessi A., and Bakken H. 2009. Pair-copula constructions of multiple dependence. Insurance: Mathematics and economics, 44(2): 182-198.
Ahmadi F., Radmanesh F., Parham G.A., and Mirabbasi Najafabadi R. 2017. Application of archimedean and extreme values copula functions for multivariate analysis of low flows in dez basin. Journal of Water and Soil, 31(4): 1031- 1045. (In Persian)
Bárdossy A. 2006. Copula-based geostatistical models for groundwater quality parameters. Water Resources Research, 42:1-12.
Bárdossy A., and Pegram G. 2014. Infilling missing precipitation records – A comparison of a new copula-based method with other techniques. Journal of Hydrology, 519, Part A (0): 1162-1170.
Daneshzadeh M., karami H., farzin S., sanikhani H., and Mousavi S.F. 2016. Bivariate analysis of meteorological drought in semnan using copula functions. Applied Research of Water Sciences. 2(3): 21-34. (In Persian)
Ganjalikhani M., Zounemat Kermani M., Rezapur M., and Rahnama M. 2016.  Evaluation of copula performance in groundwater quality zoning case study: kerman and ravar region. Iranian Journal of Soil and Water Research, 47(3): 551-560. (In Persian)
Gräler B., and Pebesma E. 2011. The pair-copula construction for spatial data: a new approach to model spatial dependency. Procedia Environmental Sciences, 7(0): 206-211.
Grimaldi S., and Serinaldi F. 2006. Asymmetric copula in multivariate flood frequency analysis. Advances in Water Resources, 29(8): 1155-1167.
Hofert M., Kojadinovic I., Maechler M., Yan J., and Nešlehová G. 2018. Copula: Multivariate Dependence with Copulas. R package (Version 0.999-19).
Jordana S.G., Jannourab R., Jordana G., Buerkerta A., and Joergensenb R.G. 2018. Spatial variability of soil properties in the floodplain of a river oasis in the mongolian Altay Mountains. Geoderma, 330: 99–106.
Karimi A., Moezzi A.A., Chorom M., and Enayatizamir N. 2019. Influence of Sugarcane bagasse biochar on nutrition availability and biological properties of a calcareous soil. Applied Soil Research, 8(1): 1-17. (In Persian)
Kitanidis, P. K. 1997. Introduction to Geostatistics: applications in hydrogeology, Cambridge University Press. UK, 247p.
Khosravi Y., and Abbasi E. 2016. Spatial Analysis of Environmental Data Using Geostatistics, 280p. (In Persian)
Kong X.M., Huang G.H., Fan Y.R., and Li Y.P. 2014. Maximum entropy- gumbel-hougaard copula method for simulation of monthly streamflow in Xiangxi River, China. Stochastic Environmental Research and Risk Assessment. 14(2): 1-14.
Li J. 2010. Application of copulas as a new geostatistical tool. PhD thesis, University of Stuttgart, Faculty of Civil and Environmental Engineering.
Moazami S., Golian S., Kavianpour M.R., and Hong Y. 2014. Uncertainty analysis of bias from satellite rainfall estimates using copula method. Atmospheric Research, 137(0): 145-166.
Nelsen R.B. 2007. An Introduction to Copulas. Springer Series in Statistics. 2nd Edition. Springer. 272 p.
Oliver M.A., and Webster R. 2015. Basic Steps in Geostatistical: The Variogram and Kriging. Springer. 100 p.
Schmidt T. 2007. Coping with Copulas. In: Rank J. (Ed.), Copulas-From Theory to Application in Finance, Risk Books, London, pp. 3-34
Shafaei M., Fakheri Fard A., Dinpajouh Y., and Mirabbasi R. 2017. Modeling rainfall event characteristics using D-vine copulas. Journal Water and Soil Resources Conservation. 6(2): 46-58. (In Persian)
Walkley A.J., and Black I.A. 1934. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science. 37: 29–38.
Wilding L.P. 1985. Spatial Variability: Its Documentation Accommodation and Implication to Soil Surveys. In: Nielsen D.R. and Bouma J. (eds.) Soil Spatial Variability. Pudoc. The Netherlands. pp. 166–194.
Yaghmaeian Mahabadi N., Samiei K., Zavvareh M. and Rmezanpour H. 2019. Spatial variation of some soil properties and their relationships with tea yield in Fouman Region, Guilan. Applied Soil Research, 7(2): 82-96. (In Persian)