تاثیر لئوناردیت و باکتری حل کننده روی بر رهاسازی و شکل‌های شیمیایی روی در خاک آهکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده کشاورزی دانشگاه ارومیه

2 شیمی و آلودگی

3 استادیار

چکیده

یکی از اهداف پژوهشگران در راستای احیاء کشاورزی پایدار، افزایش انحلالپذیری و قابلیت استفاده عناصر غذایی در خاک است. بدین منظور آزمایش سینتیکی به صورت فاکتوریل در قالب طرح کاملاً تصـادفی با دو فاکتور میکروبی (بدون باکتری و باکتری حل کننده روی) و لئوناردیت در سه سطح صفر، 2 و 4 درصد وزنی طی سه دوره زمانی انکوباسیون (30، 90 و 150 روز) در 3 تکرار طراحی و اجرا گردید. شکلهای شیمیایی و روی قابل استفاده با استفاده از روش تیسیر (Tessier) و DTPA اندازه گیری شد. نتایج نشان داد که لئوناردیت و باکتری میزان روی قابل استفاده خاک را به میزان 54 درصد افزایش و pH خاک را 1/4 درصد به‌طور معنی‌دار کاهش دادند. ویژگیهای بیولوژیکی خاک از جمله جمعیت میکروبی، تنفس پایه و کربن میکروبی بترتیب 2/36، 77 و 77 درصد افزایش یافت. توزیع شکل‌های شیمیایی روی و شاخص تحرک پذیری (Mobility factor) نیز تحت تاثیر لئوناردیت و باکتری تغییرات معنی دار داشت بطوریکه باعث افزایش شکلهای تبادلی، متصل به کربن آلی و متصل به بخش کربناته و کاهش بخش روی متصل به اکسیدهای آهن و منگنز و روی جذب شده در بخش باقیمانده در خاک شد. شاخص تحرک پذیری روی به‌عنوان یک عامل تحرک بین 8/3 الی 59/11 درصد متغییر بود و حداکثر مقدار آن در تیمار لئوناردیت 4 درصد + باکتری مشاهده شد. به طور کلی نتایج نشان داد که لئوناردیت بعنوان حاصلخیز کننده در تحرک پذیری روی یک سوپر جاذب بوده و کاربرد آن به همراه باکتری های حل کننده، اثرات مثبت در انحلال و افزایش قابلیت استفاده عناصر غذایی را دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Leonardite and Zinc Solvent Bacteria on Release and Chemical Forms of Zinc in Calcareous Soil

نویسندگان [English]

  • Fardin Hosseini 1
  • Behnam Dovlati 2
  • mohsen barin 3
1 univercity of urmia
2 عضو هیات علمی
3 Assistant Professor
چکیده [English]

Abstract
The aim of researchers in order to revive sustainable agriculture is to increase the solubility and availability of nutrients in the soil. For this purpose, this study was carried out to assess the effect of leonardite and bacteria on the chemical forms of zinc (Zn) in calcareous soils. A factorial experiment was conducted with three levels of leonardite (0, 2 and 4%) and with two microbial factors (without bacteria and zinc-soluble bacteria) at three incubation time (30, 90, 150 days) in three replications. The chemical fractionation and available forms of Zn in the soil was assayed by using the Tessier and DTPA methods. The results showed that leonardite and bacterial significantly increased Zn available forms (54%) and decreased soil pH (4.1%) during incubation time. Soil biological properties such as microbial population, basal respiration and microbial carbon increased by 36.2%, 77% and 77%, respectively. The distribution of Zn chemical forms and mobility factor also had significant changes affected of leonardite and bacteria as, it increased the exchange forms, binds to organic carbon and the carbonate part, as well as decreased the Zinc binds to Fe and Mn oxides in the soil. The mobility index of Zn ranged from 3.8 to 11.59% and its maximum value was observed in the treatment of leonardite 4% + bacteria. As a result, leonardite as a fertilizer plays an important role in element motility and its application along with solvent bacteria has positive effects on dissolution and increasing the availability of the elements.

کلیدواژه‌ها [English]

  • Zn Chemical form
  • Leonardite
  • Zinc release
  • Solvent bacteria
Abbaspour A. and Golchin A. 2011. Immobilization of heavy metals in a contaminated soil in Iran using diammonium phosphate, vermicompost and zeolite. Environmental Earth Science, 63:935-943.
Adhikari T. and Rattan R. K. 2007. Distribution of zinc fractions in some major soils of India and the impact on nutrition of rice. Communications in Soil Science and Plant Analysis, 38(19-20):2779-2798.
Amindeldar Z., Ehteshami S.M.R., Shahid Komala A. and Khawazi K. 2014. Effect of Pseudomonas bacteria on soil chemical-biological properties, yield and yield components of two rice cultivars. Journal of Production and Processing of Crops and Horticultural Products, 4 (11): 149-159.
Anderson, T. H., and Domasch, K. H. 1990. Application of eco-physiological quotients on microbial biomass from soils of different cropping histories. Soil Biology and Biochemistry, 22: 1-255.
Cakmak I. 2000. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Philologist, 146, 2: 85-200.
Canellas L.P. and Olivares F.L. 2014. Physiological responses to humic substances as plant growth promoter. Chemical and Biological Technologies in Agriculture 1: Pp3.
Chidanandappa H. M., Khan H. Chikkaramappa T. Shivaprakash B. L. 2008. Forms and distribution of zinc in soils under mulberry (Morus indica L.) of multivoltine seed area in Karnataka. Journal of Agricultural Science, 42: 26-32.
Clemente R. and Bernal M.P. 2006. Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids. Chemosphere, 64: 1264–1273.
Dovlati B, 2015. The effect of leonardite on the chemical deformation of cadmium and lead in soils derived from different parent materials. Journal of Water and Soil Knowledge, 25 (1): 165-179.
Dovlati B., Suzu Doru Ek S. and Moradi N. 2021. The effect of Leonardite on the kinetics and adsorption of heavy metals in soils contaminated with different parent materials. Natural Environment, Natural Resources of Iran, 73 (1): 23-36.
Esitken A., Yildiz H., Ercisli E.S., Donmez M.F., Turan M. and Gunes A.  2010. Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Scientia Horticuiturae 124: 62-66.
FAO/WHO/IAEA. 1996. Trace Elements in Human Nutrition and Health. WHO, Geneva.
Farshid A. 2010. Influence of zinc and boron interactions on residual available iron and manganese in the soil after corn harvest. American-Eurasian Journal of Agricultural and Environmental Science.8: 677-772.
Fathi A., Rouhani Nejad A.A. And Hosseini H. 2015. Effect of biochar on soil nutrient deformation, 5 International Conference on Applied Research in Agriculture.
Florencio I., Maria J.M., Maria D.S., Antonio G. and Leonor L. 2012. Influence of organic matter transformations on the bioavailability of heavy metals in a sludge based compost. Journal of Environmental Management, 9: 104-109.
Gee G. W. and J. W. Bauder. 1979. Particle size analysis by hydrometer- a simplified method for routine textural analysis and a sensitivity test of measurement parameters. Soil Science Society of America Journal. 1004-1007.
Ghaneh H and Karimian N. 2003. Distribution of different forms of zinc in Persian calcareous soils and their relationship with soil properties. 8th Congress of Soil Sciences, 641-642.
Ghasemi A., Fotovat A., Khorasani, R. And Emami H. 2017. Comparison of Zn and Pb Adsorption in the Presence of Fulvic Acid in a Calcareous Soil. Journal of Soil Research (Soil and Water Sciences), 31 (3): 432-440.
Gundala P.B., Chinthala P., and Sreenivasulu B. 2013. A new facultative alkaliphilic, potassium solubilize Bacillus Sp. SVUNM9 isolated from mica cores of Nellore District, Andhra Pradesh, India. Research and Reviews. Journal of Microbiolgy and Biotechnology, 2(1): 1-7.
Hafeez B., Khanif Y. M., and Saleem M. 2013. Role of zinc in plant nutrition-a review. Journal of Experimental Agriculture International, 374-391. ‏
Hoffman J., Bezchleb J., Dusek L., Dolezal L., Holoubek I., Andel P., Ansorgova A. and Maly S. 2003. Novel approach to monitoring of the soil biological quality. Environment International, 28: 771-778.
Hosseinian Rostami Q., Gholam Alizadeh Ahangar, A.  Leczian A. 2013. Effect of time on the distribution of lead forms in contaminated soil. Journal of Water and Soil (Agricultural Sciences and Industries), 27 (5): 1057-1066.
Huang C. P. Huan, C. and Morehart A. L. 1990. The removal of Cu (II) from dilute aqueous solutions by Saccharomyces cerevisiae, Water Research. 24-433–439.
Hwangbo H., R. D., Park Y. W., Kim, Y. S., Rim K., Park H., Kim H. J. S., Suh and Kim, K. Y.  2003. 2- Ketogluconic production and phosphate solubilization by Enterobacter intermedium. Current Microbiology, 47: 87–92.
Imtiaz M. Alloway B. J. Aslam M. Memon M. Y. Khan P. Siddiqui S. U. H. and Shah S. K. H. 2006. Zinc sorption in selected soils. Communications in soil science and plant analysis. 37 (11-12): 1675-1688.
Jackson J. A. Mehl J. P. and Neuendorf K. K. E. 2008. Glossary of Geology, American Geological Institiute. pp 800.
Jenkinson, D. S. and Ladd, J. N. 1981. Microbial biomass in soil: measurement and turnover. In: Powl EA, Ladd J. N. (Eds) Soil biochemistry. Dekker, New York, pp 415-417.
Kabata Pendias. A and H. Pendias. 1992. Trace elements in soils and plants. 2nd Ed, CRC Press, Boca Raton, F. L.
Khater, A.H., zaghloul, A.M., 2002. Copper and zinc desorption kinetics from soil: Effect of pH. Paper presented at the 17th world conference on soil science Thailand, symposium No.47, pp. 1-9.
Kumar Chikkappa C., Karjagi S. L., Yathish K.R. Singh K.S, Y., Hooda Abhijit Kr., Mukri J.C, G., Ramesh Kumar R, S. and Kumar, S. 2012. Maize biology: an introduction. Indian Council of Agricultural Research: pp 1-25.
Lian B., Wang B., Pan M., Liu, C. and Teng H.H. 2007. Microbial release of potassium from Kbearing minerals by thermophilic fungus Aspergillus fumigatus. Geochimical et Cosmochimica Acta, 72: 87–98.
Lind K., Lafer G., Schloffer K., Innerhoffer G. and Meister H. 2003. Organic Ruit Growing. CABI Pub., Wallingford, UK.
Lindsay, W. L., and Norvel, W. A. 1978. Development of a DTPA as a soil response investigation of Mn2+ complexation in natural and synthetic organic Soil Science Society of America Journal,46: 1137-43.
Lu A. Zhang S. and Shan X. 2005. Time effect on the fractionation of heavy metals. Geoderma, 125: 225-234.
Lyengar S.S., Martens D.C. and Miller W.P. 1981 Distribution and availability of soil Zn fractions. Soil Science Society of America Journal. 45:735-739.
Macbrid M. B. 1994. Environmental chemistry of soils. Oxford University press New York.
Machovic V. Mizera J. Sykorova, I. Borecka L. 2000. Ion-exchange properties of Czech oxidized coals, Acta Montana.
Majumder B., Mandal B., Bandyopadhyay P.K., Gangopadhyay A., Mani P.K., Kundu A.L. and Mazumdar D. 2008. Organic amendments influence soil organic carbon pools and rice-wheat productivity. Soil Sci. Soc. Am. J. 72: 775-785.
Marshner H. 1986. Mineral nutrition of higher plants. Academic press, Inc. New York, NY. 674 p.
Mehboob I., Naveed M.and Zahir Z. A. 2009. Rhizobial association with non-legumes: mechanisms and applications. Critical Reviews in Plant Science, 28 (6), 432-456. ‏
Moira E. K., Henderson M. E. K. and Duff R. B. 1963. The release of metallic and silicates ions from minerals, rocks and soils by fungal activity. Journal of Soil Science . 14: 237-245.
Mora V., Bacaicoa E., Zamarreño A.M., Aguirre Em., Garnica M., Fuentes M. García-Mina J.M. 2010. Action of humic acid on promotion of cucumber shoot growth involves nitrate-related changes associated with the root-to-shootdistribution of cytokinins, polyamines and mineral nutrients. Journal of Plant Physiology. 167(8), 633-642.
Motaghian H. and Hosseinpur A. 2013. Zinc desorption kinetics in wheat (Triticum Aestivum L.) rhizosphere in some sewage sludge amended soils. Jornal of  Soil Science and Plant Nutrition, 13: 3. 664-678.
Mottaqi M. 2018. Cultivation of corn seedlings, a solution to reduce water consumption and increase grain yield. Agricultural Research, Education and Extension Organization, Hamedan, 15(60):1-6.
Naik S.K. and Das D.K. 2007. Effect of lime, humic acid and moisture regime on the availability of zinc in alfisol. The Scientific World Journal. 7:1198-1206.
Pavel J., Jana V., Lucie H. and Vera P. 2010. Effects of inorganic and organic amendments on the mobility (leachability) of heavy metals in contaminated soil, a sequential extraction study. Science direct, Geoderma, 159: 335–341.
Pérez-Esteban J., Escolástico C., Sanchis I., Masaguer A. and Moliner A. 2019. Effects of pH Conditions and Application Rates of Commercial Humic Substances on Cu and Zn Mobility in Anthropogenic Mine Soils. Sustainability, 11(4844): 1-13.
Piri M., Sepehr E. and Rengel Z. 2019. Citric acid decreased and humic acid increased Zn sorption in soils. Geoderma, 341: 39- 45.
Rasul G., Appuhn A., Muller T. and Joergensen R.G. 2006. Salinity-induced changes in the microbial use of sugarcane filter cake added to soil. Applied Soil Ecology, 31: 1- 10.
Rayment G. E., and Higginson F. R. 1992.  Australian laboratory handbook of soil and water chemical methods. Melbourne, In kata Press.
Reyhanitabar A. Karimian N. Ardalan M. Savaghebi G. H. R. and Ghanadha M. R. 2006. Zinc Fractions of Selected Calcareous Soils of Tehran Province and Their Relationships with Soil Characteristics. Journal of Science and Technology of Agriculture and Natural Resources. 3: 125-136 (In Persian)
Reyhanitabar A., Ardalan M.M., Karimian N., Savaghebi G.R. and Gilkes R.J., 2011. Kinetics of Zinc Sorption by Some Calcareous Soils of Iran. Journal of Agricultural Science and Technology, 13(2): 263-272.
Rodrı´Guez L, Ruiz E, Alonso-Azca´rate J, Rinco´N J. 2009. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain. J Environ Manage. 90:106–116
Rodriguez J. B., Self J. R. and Westfall D. G. 1999. Sodium bicarbonate-DTPA test for macro and micro nutrient elements in soils. Communications in Soil Science and Plant Analysis. 30 (7-8): 957-970.
Saravanan V. S. Subramoniam S. R. and Ra S. A. 2003. Assessing in vitro solubilization potential of different zinc solubilizing bacterial (zsb) isolates. Brazilian Journal of Microbiology, 34: 121-125.
Saravanan V. S. Subramoniam S. R. and Ra S. A. 2003. Assessing in vitro solubilization potential of different zinc solubilizing bacterial (zsb) isolates. Brazilian Journal of Microbiology, 34: 121-125.
Sharifi H. and Khoshgoftarmanesh A. 2011. Selecting zinc efficient wheat genotypes with high grain yield using a stress tolerance index.
Sharma B. D., Arora H. Kumar R. and Nayyar V. K. 2004. Relationships between soil characteristics and total and DTPA-extractable micronutrients in Inceptisols of Punjab. Communications in soil science and plant analysis. 35 (5-6): 799-818.
Shuman L. M. 1986. Effect of ionic strength and anions on zinc adsorption by two soils. Soil Science Society of America Journal, 50: 1438–1442.
Smith S R. 2009. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environment International. 2009; 35: 142–156.
Sodaeimashaei S., Aliasgharzadeh N. and Ostan S.h., 2007. Kinetics of mineralization of nitrogen in a soil treated with compost, vermicompost, and cow manure. Journal of Science and Technology Agriculture and Natural Resources, Water and Soil Science 42, 405-414.
Suge H. Takahashi H. Artia S. and Takaki H. 1986. Gibberlin relationships in zinc deficiency plants. Plant CellPhysiology, 27: 1005-1012.
Sumner M. E. and W. P. Miller. 1996. Cation exchange capacity and exchange coefficients. Methods of soil analysis part 3-chemical methods, (methodsofsoilan3). pp. 1201-1229.
Tessier A., Cambell P. G. C. and Bisson M. 1979. Sequential extraction procedure for specification of particulate trace metals. Analytical Chemistry. 51: 844-851.
Thomas G. W. 1996. Soil and Soil acidity. pp: 475-490. In: D. L. Sparks et al. Methods of Soil Analysis. Part.3rd Ed., Am. Soc. Agron., Madison, WI.
Udo E. J. Bohn H. L. and Tucker T. C. 1970. Zinc adsorption by calcareous soils. Soil Science Society of AmericanJournal, 34: 405-407.
Usman A.R.A., Kuzyakov Y. and Stahr K. 2004. Dynamics of organic C mineralization and the mobile fraction of heavy metals in a calcareous soil incubated with organic wastes. Water, Air, and Soil Pollution, 158:401-418.
Walkley A. and Black I. A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acidtitration method. Soil science. 37 (1): 29-38.
White M. C., Chaney R. L. 1980. Zinc, Cadmium and Manganese Uptake by Soybean from Two Zinc- and Cadmium-Amended Coastal Plain Soil1. Soil Sci. Soc. Am. J, 44, 308-313.
Yildirim E. R. T. A. N., Turan M. E. T. I. N. and Donmez M. F. 2008. Mitigation of salt stress in radish (Raphanus sativus L.) by plant growth promoting rhizobacteria. Roumanian Biotechnol Lett, 13, 3933-3943. ‏
Zhao F., Sheng X.F., and Huang Z. 2008. Isolation of mineral potassium solubilizing bacterial strains from agricultural soils in Shandong province. Biodiversity Science, 16:593–600.